An optimizing hybrid interface architecture for unleashing the potential of sulfide-based all-solid-state battery

材料科学 硫化物 电解质 锂(药物) 相间 电池(电) 化学工程 合金 快离子导体 纳米技术 复合材料 电极 热力学 冶金 物理化学 功率(物理) 医学 化学 物理 生物 工程类 遗传学 内分泌学
作者
Yaru Shi,Libin Hu,Qiuhong Li,Yi Sun,Qiming Duan,Yong Jiang,Yi Xu,Yi Jin,Bing Zhao,Jiujun Zhang
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:63: 103009-103009 被引量:45
标识
DOI:10.1016/j.ensm.2023.103009
摘要

Sulfide-based all-solid-state lithium metal batteries are received tremendous focus due to the potential to deliver high energy density. Nevertheless, extremely unstable lithium/sulfide interface reaction and growth of unfavorable Li dendrites upon cycling remain challenging aspects and not yet fully settled. In this work, a lithophilic and high interfacial-energy hybrid interphase rich in chloride and Li-Ga alloy was in-situ constructed at Li/Li7P3S11 interface to tackle the vexing issue. Benefiting from the high interfacial energy and electronic insulation of LiCl in the hybrid interphase, lithium dendrites were effectively inhibited. In addition, the Li-Ga alloy-rich layer possesses excellent lithiophilicity and low diffusion energy, which can provide a uniform electric field distribution and induce rapid conduction of Li-ions. Consequently, the densification of Li/Li7P3S11 interface is achieved, which contributes to the decrease of interfacial impedance, uniform Li-ion flux and inhibition of continuous side reactions. Exalting, the Li symmetric cells with the Li-Ga alloy/LiCl (LGC) interlayer display high critical current density of 1.5 mA cm−2 and steady cycle for 1000 h at 0.3 mA cm−2 (0.3 mAh cm−2) at room temperature. Furthermore, the modified all-solid-state lithium battery also demonstrates an ultra-stable cycling. This work provides a reasonable design approach for the selection of interface layers in the all-solid-state lithium metal batteries (ASSLMBs) based on theoretical calculations, with the objective of attaining a stable Li/sulfide solid electrolyte interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助万慧采纳,获得100
刚刚
1秒前
狗尾巴草发布了新的文献求助10
2秒前
金毛上将完成签到,获得积分10
2秒前
3秒前
谷谷完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
充电宝应助Leah采纳,获得10
4秒前
爱吃姜的面条完成签到,获得积分10
5秒前
domingo发布了新的文献求助30
5秒前
沉默的靖儿完成签到 ,获得积分10
6秒前
wanci应助快乐小狗采纳,获得10
7秒前
卡卡光波完成签到,获得积分10
7秒前
虚心的老头完成签到,获得积分10
7秒前
Ava应助Orange采纳,获得10
7秒前
玄音完成签到,获得积分10
8秒前
zzw完成签到,获得积分10
9秒前
9秒前
11秒前
12秒前
12秒前
12秒前
12秒前
Akim应助bhappy21采纳,获得10
14秒前
妮妮完成签到,获得积分10
15秒前
17秒前
17秒前
Foura发布了新的文献求助10
18秒前
18秒前
kobegirl发布了新的文献求助10
18秒前
科研通AI5应助sxmt123456789采纳,获得10
18秒前
Bake发布了新的文献求助10
18秒前
18秒前
will发布了新的文献求助10
18秒前
快乐的忆安完成签到,获得积分10
19秒前
二二完成签到,获得积分10
19秒前
无为完成签到,获得积分10
19秒前
SGLY完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192038
求助须知:如何正确求助?哪些是违规求助? 4375147
关于积分的说明 13623731
捐赠科研通 4229284
什么是DOI,文献DOI怎么找? 2319783
邀请新用户注册赠送积分活动 1318375
关于科研通互助平台的介绍 1268503