亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Utilizing LiDAR to quantify aboveground tree biomass within an urban university

激光雷达 生物量(生态学) 环境科学 树木异速生长 城市林业 城市森林 天蓬 栖息地 林业 地理 农林复合经营 生态学 遥感 生物 生物量分配
作者
Maggi Schick,Robert Griffin,Emil Cherrington,Thomas L. Sever
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:89: 128098-128098 被引量:11
标识
DOI:10.1016/j.ufug.2023.128098
摘要

Universities, often situated at the heart of metropolitan areas, have the unique opportunity to leverage effective urban forestry methods to promote ecological and economic conservation. Simply identifying what trees to plant where can have major effects such as reducing temperature, flood impacts, habitat fragmentation, and carbon emissions in urban areas. Detailed mapping of tree biomass allows researchers to spatially identify carbon sinks and analyze the associated ecological benefits at an urban or intra-urban level. This study utilizes non-destructive field measurements and aerial Light Detection and Ranging (LiDAR) remote sensing to estimate biomass on the University of Alabama in Huntsville (UAH) campus. A field survey of campus trees was performed to calculate the observed biomass through allometry. These values were then used as an input in a regression analysis along with LiDAR-derived canopy metrics to evaluate LiDAR's ability to estimate biomass. The result yielded biomass equations specific to 14 tree species found on the UAH campus. It was found that the regression models showed a high fit (R2 = 0.62-0.98) for most species. Some trees such as the Pinus taeda, Pinus echinata, and Lagerstroemia indica had lower R2 values (0.26-0.43) most likely due to overlapping tree canopies; a known limitation in urban biomass studies that can be solved with more intricate segmentation methods. Nonetheless, this methodology is an avenue for urban planners to estimate biomass without intensive and costly field surveys, particularly in north Alabama where there is a lack of urban biomass research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
8秒前
14秒前
24秒前
24秒前
24秒前
矢思然完成签到,获得积分10
28秒前
29秒前
寒冷念文发布了新的文献求助10
30秒前
31秒前
默默完成签到 ,获得积分10
39秒前
bkagyin应助寒冷念文采纳,获得10
39秒前
43秒前
狂野的含烟完成签到 ,获得积分10
45秒前
48秒前
48秒前
52秒前
53秒前
54秒前
ffff完成签到 ,获得积分10
54秒前
畅快甜瓜发布了新的文献求助30
59秒前
华仔应助Omni采纳,获得10
59秒前
yb完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ljy完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
星辰大海应助畅快甜瓜采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
weibo完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542