Utilizing LiDAR to quantify aboveground tree biomass within an urban university

激光雷达 生物量(生态学) 环境科学 树木异速生长 城市林业 城市森林 天蓬 栖息地 林业 地理 农林复合经营 生态学 遥感 生物 生物量分配
作者
Maggi Schick,Robert Griffin,Emil Cherrington,Thomas L. Sever
出处
期刊:Urban Forestry & Urban Greening [Elsevier BV]
卷期号:89: 128098-128098 被引量:11
标识
DOI:10.1016/j.ufug.2023.128098
摘要

Universities, often situated at the heart of metropolitan areas, have the unique opportunity to leverage effective urban forestry methods to promote ecological and economic conservation. Simply identifying what trees to plant where can have major effects such as reducing temperature, flood impacts, habitat fragmentation, and carbon emissions in urban areas. Detailed mapping of tree biomass allows researchers to spatially identify carbon sinks and analyze the associated ecological benefits at an urban or intra-urban level. This study utilizes non-destructive field measurements and aerial Light Detection and Ranging (LiDAR) remote sensing to estimate biomass on the University of Alabama in Huntsville (UAH) campus. A field survey of campus trees was performed to calculate the observed biomass through allometry. These values were then used as an input in a regression analysis along with LiDAR-derived canopy metrics to evaluate LiDAR's ability to estimate biomass. The result yielded biomass equations specific to 14 tree species found on the UAH campus. It was found that the regression models showed a high fit (R2 = 0.62-0.98) for most species. Some trees such as the Pinus taeda, Pinus echinata, and Lagerstroemia indica had lower R2 values (0.26-0.43) most likely due to overlapping tree canopies; a known limitation in urban biomass studies that can be solved with more intricate segmentation methods. Nonetheless, this methodology is an avenue for urban planners to estimate biomass without intensive and costly field surveys, particularly in north Alabama where there is a lack of urban biomass research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的以云完成签到 ,获得积分10
刚刚
行行完成签到,获得积分10
刚刚
1秒前
研友_VZG7GZ应助猪猪hero采纳,获得50
1秒前
Beatrice发布了新的文献求助10
2秒前
2秒前
3秒前
李静完成签到 ,获得积分10
3秒前
沉默的香氛应助欧皇采纳,获得10
4秒前
科研通AI6应助123采纳,获得10
4秒前
Hello应助zwenng采纳,获得10
4秒前
所所应助温暖的醉蓝采纳,获得10
4秒前
5秒前
peanut发布了新的文献求助10
5秒前
daisy发布了新的文献求助10
5秒前
Hello应助llllllb采纳,获得10
5秒前
6秒前
KM完成签到,获得积分10
6秒前
不一发布了新的文献求助10
7秒前
7秒前
暴躁莹子发布了新的文献求助10
7秒前
李健应助无韶的月亮树采纳,获得30
8秒前
8秒前
佳语妍说发布了新的文献求助10
9秒前
nikonikoni完成签到,获得积分10
9秒前
淡淡烙完成签到,获得积分10
9秒前
Akim应助ANNNNNN采纳,获得10
10秒前
欧皇应助文件撤销了驳回
10秒前
11秒前
小小垚完成签到,获得积分10
11秒前
虚拟的眼神完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助150
11秒前
荧123456发布了新的文献求助10
11秒前
12秒前
12秒前
不一完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
体贴的嵩发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085903
求助须知:如何正确求助?哪些是违规求助? 4301887
关于积分的说明 13405716
捐赠科研通 4126924
什么是DOI,文献DOI怎么找? 2260099
邀请新用户注册赠送积分活动 1264194
关于科研通互助平台的介绍 1198415