Utilizing LiDAR to quantify aboveground tree biomass within an urban university

激光雷达 生物量(生态学) 环境科学 树木异速生长 城市林业 城市森林 天蓬 栖息地 林业 地理 农林复合经营 生态学 遥感 生物 生物量分配
作者
Mark Schick,Robert Griffin,E. A. Cherrington,Thomas L. Sever
出处
期刊:Urban Forestry & Urban Greening [Elsevier]
卷期号:89: 128098-128098 被引量:4
标识
DOI:10.1016/j.ufug.2023.128098
摘要

Universities, often situated at the heart of metropolitan areas, have the unique opportunity to leverage effective urban forestry methods to promote ecological and economic conservation. Simply identifying what trees to plant where can have major effects such as reducing temperature, flood impacts, habitat fragmentation, and carbon emissions in urban areas. Detailed mapping of tree biomass allows researchers to spatially identify carbon sinks and analyze the associated ecological benefits at an urban or intra-urban level. This study utilizes non-destructive field measurements and aerial Light Detection and Ranging (LiDAR) remote sensing to estimate biomass on the University of Alabama in Huntsville (UAH) campus. A field survey of campus trees was performed to calculate the observed biomass through allometry. These values were then used as an input in a regression analysis along with LiDAR-derived canopy metrics to evaluate LiDAR's ability to estimate biomass. The result yielded biomass equations specific to 14 tree species found on the UAH campus. It was found that the regression models showed a high fit (R2 = 0.62-0.98) for most species. Some trees such as the Pinus taeda, Pinus echinata, and Lagerstroemia indica had lower R2 values (0.26-0.43) most likely due to overlapping tree canopies; a known limitation in urban biomass studies that can be solved with more intricate segmentation methods. Nonetheless, this methodology is an avenue for urban planners to estimate biomass without intensive and costly field surveys, particularly in north Alabama where there is a lack of urban biomass research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wangweiwei完成签到,获得积分10
1秒前
隐形曼青应助莫小乔斯采纳,获得10
2秒前
可爱的函函应助www采纳,获得10
2秒前
会发光的碳完成签到,获得积分10
3秒前
3秒前
setmefree发布了新的文献求助10
5秒前
向日葵应助YY采纳,获得10
5秒前
Yang_Yuting完成签到 ,获得积分10
5秒前
白茶完成签到,获得积分10
7秒前
充电宝应助王稀松采纳,获得10
7秒前
Leon Lai完成签到,获得积分10
8秒前
林林发布了新的文献求助10
10秒前
紫金帛关注了科研通微信公众号
10秒前
打打应助Mr_X采纳,获得10
11秒前
www完成签到,获得积分10
11秒前
11秒前
神经元完成签到,获得积分10
12秒前
12秒前
13秒前
Sherlock完成签到,获得积分10
14秒前
16秒前
llzuo发布了新的文献求助10
17秒前
阿腾发布了新的文献求助30
18秒前
大尾尾完成签到,获得积分10
19秒前
samjoo完成签到,获得积分10
21秒前
生动的往事完成签到 ,获得积分10
21秒前
22秒前
乐乐应助Jie采纳,获得10
23秒前
李振华完成签到,获得积分10
23秒前
无影灯完成签到,获得积分10
24秒前
默幻弦完成签到,获得积分10
25秒前
英姑应助Yang_Yuting采纳,获得30
25秒前
26秒前
fqpang完成签到 ,获得积分10
26秒前
NexusExplorer应助yoyo采纳,获得10
26秒前
27秒前
李振华发布了新的文献求助10
27秒前
30秒前
小白发布了新的文献求助10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226