Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network

残余物 特征提取 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 断层(地质) 特征(语言学) 噪音(视频) 核(代数) 卷积(计算机科学) 块(置换群论) 故障检测与隔离 算法 人工神经网络 数学 哲学 地质学 图像(数学) 组合数学 地震学 执行机构 语言学 几何学
作者
Zhiwu Shang,Hu Liu,Baoren Zhang,Zehua Feng,Wanxiang Li
出处
期刊:Insight [British Institute of Non-Destructive Testing]
卷期号:65 (10): 559-569 被引量:2
标识
DOI:10.1784/insi.2023.65.10.559
摘要

This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助小糊涂采纳,获得10
刚刚
feng完成签到 ,获得积分10
刚刚
霍笑白完成签到,获得积分10
刚刚
衡珩蘅完成签到,获得积分20
1秒前
3秒前
FashionBoy应助sbf采纳,获得10
3秒前
完美世界应助evelyn采纳,获得10
3秒前
鱼鱼色发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
搜集达人应助HH采纳,获得10
4秒前
5秒前
搜集达人应助lmr采纳,获得10
5秒前
完美世界应助罗柠七采纳,获得20
6秒前
阿强完成签到,获得积分10
6秒前
衡珩蘅发布了新的文献求助30
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
嘞是举仔应助hanyuchao采纳,获得50
8秒前
up关闭了up文献求助
8秒前
结实黑猫发布了新的文献求助10
8秒前
cmu1h完成签到,获得积分10
8秒前
李凯发布了新的文献求助10
8秒前
8秒前
9秒前
a.........发布了新的文献求助10
10秒前
美味又健康完成签到 ,获得积分10
10秒前
她说肚子是吃大的i完成签到,获得积分10
10秒前
11秒前
wan发布了新的文献求助10
11秒前
阿士大夫完成签到,获得积分10
12秒前
Mt发布了新的文献求助10
12秒前
12秒前
13秒前
麦冬粑粑完成签到,获得积分10
13秒前
卓卓卓卓发布了新的文献求助40
13秒前
SciGPT应助hml采纳,获得10
13秒前
14秒前
15秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233