Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network

残余物 特征提取 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 断层(地质) 特征(语言学) 噪音(视频) 核(代数) 卷积(计算机科学) 块(置换群论) 故障检测与隔离 算法 人工神经网络 数学 语言学 哲学 几何学 组合数学 地震学 图像(数学) 地质学 执行机构
作者
Zhiwu Shang,Hu Liu,Baoren Zhang,Zehua Feng,Wanxiang Li
出处
期刊:Insight [British Institute of Non-Destructive Testing]
卷期号:65 (10): 559-569 被引量:2
标识
DOI:10.1784/insi.2023.65.10.559
摘要

This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zxy发布了新的文献求助10
刚刚
彭于晏应助ahtj采纳,获得10
刚刚
1秒前
llzuo完成签到,获得积分10
1秒前
milk完成签到 ,获得积分10
2秒前
阳佟怀绿完成签到,获得积分10
2秒前
xiamu发布了新的文献求助20
2秒前
3秒前
KK完成签到,获得积分10
3秒前
qr发布了新的文献求助10
3秒前
3秒前
3秒前
amino发布了新的文献求助10
4秒前
4秒前
ananan完成签到 ,获得积分10
4秒前
简单捕手发布了新的文献求助10
5秒前
5秒前
调皮的蚂蚁完成签到,获得积分10
6秒前
德国克大夫完成签到,获得积分10
6秒前
核桃大王完成签到,获得积分10
6秒前
zehua309完成签到,获得积分10
6秒前
LQR完成签到,获得积分10
6秒前
7秒前
MaYue完成签到,获得积分10
7秒前
土豪的紫荷完成签到 ,获得积分10
8秒前
8秒前
马1112完成签到,获得积分10
8秒前
君莫笑发布了新的文献求助10
9秒前
yy发布了新的文献求助10
9秒前
CAOHOU应助Beck采纳,获得10
9秒前
melisa发布了新的文献求助10
9秒前
巫马炎彬完成签到,获得积分10
10秒前
智勇双全完成签到,获得积分10
10秒前
暴躁的海ge完成签到,获得积分10
10秒前
11秒前
摸鱼的小y完成签到,获得积分10
11秒前
orixero应助苹果孤容采纳,获得10
11秒前
吴智琼完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259