亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network

残余物 特征提取 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 断层(地质) 特征(语言学) 噪音(视频) 核(代数) 卷积(计算机科学) 块(置换群论) 故障检测与隔离 算法 人工神经网络 数学 哲学 地质学 图像(数学) 组合数学 地震学 执行机构 语言学 几何学
作者
Zhiwu Shang,Hu Liu,Baoren Zhang,Zehua Feng,Wanxiang Li
出处
期刊:Insight [British Institute of Non-Destructive Testing]
卷期号:65 (10): 559-569 被引量:2
标识
DOI:10.1784/insi.2023.65.10.559
摘要

This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
量子星尘发布了新的文献求助10
12秒前
AliEmbark完成签到,获得积分10
18秒前
20秒前
搞怪的白云完成签到 ,获得积分10
49秒前
Zhaowx完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
XMH发布了新的文献求助30
1分钟前
lelele发布了新的文献求助10
1分钟前
lelele完成签到,获得积分20
1分钟前
XMH完成签到,获得积分10
2分钟前
2分钟前
2分钟前
坦呐发布了新的文献求助10
2分钟前
嘻嘻完成签到,获得积分10
3分钟前
4分钟前
4分钟前
张艳鑫发布了新的文献求助10
4分钟前
科研通AI6应助张艳鑫采纳,获得10
5分钟前
5分钟前
6分钟前
所所应助苹果诗珊采纳,获得10
6分钟前
人类后腿完成签到,获得积分20
7分钟前
好运常在完成签到 ,获得积分10
7分钟前
科研通AI6应助坦呐采纳,获得10
8分钟前
8分钟前
瑶瑶完成签到,获得积分10
8分钟前
呜呼发布了新的文献求助10
8分钟前
Criminology34应助瑶瑶采纳,获得20
8分钟前
科研通AI6应助科研通管家采纳,获得10
8分钟前
华仔应助呜呼采纳,获得10
9分钟前
9分钟前
科目三应助yy采纳,获得10
9分钟前
9分钟前
9分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5245461
求助须知:如何正确求助?哪些是违规求助? 4410876
关于积分的说明 13728788
捐赠科研通 4281172
什么是DOI,文献DOI怎么找? 2348995
邀请新用户注册赠送积分活动 1346099
关于科研通互助平台的介绍 1304924