Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network

残余物 特征提取 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 断层(地质) 特征(语言学) 噪音(视频) 核(代数) 卷积(计算机科学) 块(置换群论) 故障检测与隔离 算法 人工神经网络 数学 哲学 地质学 图像(数学) 组合数学 地震学 执行机构 语言学 几何学
作者
Zhiwu Shang,Hu Liu,Baoren Zhang,Zehua Feng,Wanxiang Li
出处
期刊:Insight [British Institute of Non-Destructive Testing]
卷期号:65 (10): 559-569 被引量:2
标识
DOI:10.1784/insi.2023.65.10.559
摘要

This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gwinn发布了新的文献求助10
1秒前
慢羊羊发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
宋启文发布了新的文献求助10
1秒前
mtt应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
27发布了新的文献求助10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
wg发布了新的文献求助10
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
orixero应助科研通管家采纳,获得10
2秒前
amanda应助科研通管家采纳,获得20
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
一叶知秋应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Jasper应助陈琳采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933396
求助须知:如何正确求助?哪些是违规求助? 4201613
关于积分的说明 13054063
捐赠科研通 3975660
什么是DOI,文献DOI怎么找? 2178529
邀请新用户注册赠送积分活动 1194810
关于科研通互助平台的介绍 1106200