Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network

残余物 特征提取 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 断层(地质) 特征(语言学) 噪音(视频) 核(代数) 卷积(计算机科学) 块(置换群论) 故障检测与隔离 算法 人工神经网络 数学 哲学 地质学 图像(数学) 组合数学 地震学 执行机构 语言学 几何学
作者
Zhiwu Shang,Hu Liu,Baoren Zhang,Zehua Feng,Wanxiang Li
出处
期刊:Insight [British Institute of Non-Destructive Testing]
卷期号:65 (10): 559-569 被引量:2
标识
DOI:10.1784/insi.2023.65.10.559
摘要

This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanxinyue应助老八采纳,获得10
刚刚
zxczxc发布了新的文献求助10
1秒前
是赵先森呀完成签到,获得积分10
1秒前
大方的不乐完成签到,获得积分10
1秒前
Cloris完成签到,获得积分10
1秒前
chigga发布了新的文献求助10
2秒前
忧虑的书南文舟舟完成签到 ,获得积分10
2秒前
黑糖应助pumpkin采纳,获得30
2秒前
2秒前
无极微光应助雪下卧眠采纳,获得20
2秒前
dududu发布了新的文献求助10
2秒前
2秒前
发嗲的黑夜完成签到,获得积分10
3秒前
zyl完成签到,获得积分10
3秒前
Owen应助dakjdia采纳,获得10
3秒前
3秒前
初雪完成签到,获得积分10
3秒前
ggxiang1989发布了新的文献求助10
3秒前
苏雨发布了新的文献求助10
4秒前
yzz完成签到,获得积分10
4秒前
ding完成签到,获得积分10
5秒前
封印完成签到,获得积分10
5秒前
硕shuoer完成签到,获得积分10
5秒前
6秒前
坚定的又莲完成签到 ,获得积分10
6秒前
wanwusheng完成签到,获得积分10
7秒前
思维隋完成签到 ,获得积分10
7秒前
8秒前
致秋相府君完成签到,获得积分10
8秒前
LIT完成签到,获得积分10
8秒前
9秒前
9秒前
Keira完成签到,获得积分10
9秒前
9秒前
joybee完成签到,获得积分0
9秒前
wwwwwnnnnn完成签到 ,获得积分10
10秒前
10秒前
Serein完成签到,获得积分10
10秒前
脸小呆呆完成签到 ,获得积分10
10秒前
媛肖完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773811
求助须知:如何正确求助?哪些是违规求助? 5613858
关于积分的说明 15432836
捐赠科研通 4906205
什么是DOI,文献DOI怎么找? 2640110
邀请新用户注册赠送积分活动 1587960
关于科研通互助平台的介绍 1543002