Multi-view feature fusion fault diagnosis method based on an improved temporal convolutional network

残余物 特征提取 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 断层(地质) 特征(语言学) 噪音(视频) 核(代数) 卷积(计算机科学) 块(置换群论) 故障检测与隔离 算法 人工神经网络 数学 语言学 哲学 几何学 组合数学 地震学 图像(数学) 地质学 执行机构
作者
Zhiwu Shang,Hu Liu,Baoren Zhang,Zehua Feng,Wanxiang Li
出处
期刊:Insight [British Institute of Non-Destructive Testing]
卷期号:65 (10): 559-569 被引量:1
标识
DOI:10.1784/insi.2023.65.10.559
摘要

This paper addresses the problem of fault identification in rotating machinery by analysing vibration data using a neural network approach. Temporal convolutional networks (TCNs) have attracted a lot of focus in the domain of fault identification; however, TCN convolution kernels are small and susceptible to high-frequency noise interference. Furthermore, the default weight coefficient of the internal residual connection is 1. When there are few residual blocks, the residual block characteristic extraction ability is suppressed and only the vibration signal collected at a single location is utilised for fault diagnosis as it contains incomprehensive fault information. To tackle the above issues, this paper proposes a multi-view feature fusion fault diagnosis algorithm with an adaptive residual coefficient assignment TCN with wide first-layer kernels (WD-ARCATCN). Firstly, a WD-ARCATCN feature extraction network is designed to extract deep state features from different views and the first layer of the TCN is set as a wide-kernel (WD) convolutional layer to suppress high-frequency noise. An adaptive residual coefficient assignment (ARCA) unit is designed in the residual connection to increase the characteristic learning capability of the residual blocks and the residual blocks with ARCA units are stacked to further extract multi-view deep fault features. In this paper, acceleration signals collected at different positions are used as the multi-view feature source for the first time and the fault information contained is more comprehensive. Then, based on a self-attention mechanism, the multi-view feature fusion method is improved and the view weights are adaptively assigned to effectively fuse different view characteristics and enhance the identification of the fault characteristics. Finally, the mapping between the multi-view fusion features and the labels is achieved using a softmax classifier. The algorithm has been tested using experimental data from the bearing vibration database at Case Western Reserve University (CWRU) and it performed much better compared to other diagnostic algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助30
刚刚
3秒前
打打应助白佐帅采纳,获得10
6秒前
tuanheqi应助kento采纳,获得50
7秒前
9秒前
tefy完成签到,获得积分10
11秒前
12秒前
大个应助小混分怪采纳,获得10
13秒前
安静的虔发布了新的文献求助10
14秒前
粗暴的遥发布了新的文献求助10
15秒前
你好呀嘻嘻完成签到 ,获得积分10
15秒前
MZ完成签到,获得积分10
16秒前
香蕉觅云应助程克勤采纳,获得10
16秒前
画舫发布了新的文献求助10
17秒前
17秒前
33完成签到 ,获得积分10
20秒前
20秒前
神凰完成签到,获得积分10
22秒前
小蘑菇应助zhangzhenfei采纳,获得10
22秒前
23秒前
微笑二娘完成签到 ,获得积分10
23秒前
小蘑菇应助云鲲采纳,获得10
25秒前
25秒前
lili发布了新的文献求助10
25秒前
画舫完成签到,获得积分10
26秒前
26秒前
水悟子完成签到,获得积分10
27秒前
木偶发布了新的文献求助10
27秒前
28秒前
29秒前
XJY完成签到,获得积分10
30秒前
裴钰发布了新的文献求助10
30秒前
SciGPT应助辰星采纳,获得10
31秒前
GeneYang完成签到 ,获得积分10
31秒前
曹姗发布了新的文献求助10
31秒前
烂漫的汲发布了新的文献求助10
34秒前
Orange应助粗暴的遥采纳,获得10
37秒前
38秒前
38秒前
如意的乐天给学渣小林的求助进行了留言
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141402
求助须知:如何正确求助?哪些是违规求助? 2792438
关于积分的说明 7802634
捐赠科研通 2448628
什么是DOI,文献DOI怎么找? 1302644
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237