亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

QFDSA: A Quantum-Secured Federated Learning System for Smart Grid Dynamic Security Assessment

计算机科学 可扩展性 钥匙(锁) 量子密钥分配 智能电网 分布式计算 信息隐私 计算机安全 嵌入式系统 计算机网络 量子 操作系统 生态学 量子力学 生物 物理
作者
Chao Ren,Rudai Yan,Minrui Xu,Han Yu,Yan Xu,Dusit Niyato,Zhao Yang Dong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 8414-8426 被引量:3
标识
DOI:10.1109/jiot.2023.3321793
摘要

Enhanced by machine learning (ML) techniques, data-driven dynamic security assessment (DSA) in smart cyberphysical grids has attracted great research interests in recent years. However, as existing DSA methods generally rely on centralized ML architectures, the scalability, privacy, and cost-effectiveness of existing methods are limited. To address these issues, we propose a novel quantum-secured distributed intelligent system for smart cyber-physical DSA based on federated learning (FL) and quantum key distribution (QKD), namely QFDSA. QFDSA aggregates the knowledge learned from various local data owners (a.k.a. clients) to predict and evaluate the system stability status in a decentralized fashion. In addition, in order to preserve the privacy of the distributed DSA data, QFDSA adopts the measurement-device-independent QKD, which can further improve the security of local DSA model transmission. Moreover, to accommodate the typical fast system environment and requirements changes, QFDSA alleviates the issues of limited key generation rates by utilizing secret-key pools that guarantee the availability of adequate secret-key materials. Extensive experiments based on the New England 10-machine 39-bus testing system and the synthetic Illinois 49-machine 200-bus testing system demonstrates that the proposed QFDSA method can achieve more advantageous DSA performance while protecting the privacy of local data for real-time DSA applications compared to the benchmarks. Besides, the secret key generation rate can be improved to adjust its parameters dynamically in real-time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Forizix采纳,获得10
25秒前
Forizix完成签到,获得积分10
30秒前
31秒前
40秒前
Forizix发布了新的文献求助10
43秒前
46秒前
58秒前
1分钟前
江经纬发布了新的文献求助20
1分钟前
1分钟前
李健的小迷弟应助George采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
四季刻歌发布了新的文献求助10
1分钟前
1分钟前
2分钟前
George发布了新的文献求助10
2分钟前
JamesPei应助郭楠楠采纳,获得10
2分钟前
艾路完成签到,获得积分10
2分钟前
研友_ngqgY8完成签到,获得积分10
2分钟前
JamesPei应助温暖的乐蓉采纳,获得10
2分钟前
2分钟前
郭楠楠发布了新的文献求助10
2分钟前
2分钟前
比格大王应助badyoungboy采纳,获得10
2分钟前
江经纬完成签到,获得积分20
2分钟前
顾矜应助郭楠楠采纳,获得10
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
隐形不凡完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287