Enhancing photostability of 2D Ruddlesden–Popper perovskite via molecular acceptor passivation of metallic lead defects

钝化 X射线光电子能谱 材料科学 光致发光 紫外光电子能谱 接受者 钙钛矿(结构) 光电子学 光化学 纳米技术 化学 化学工程 结晶学 图层(电子) 物理 工程类 凝聚态物理
作者
Kitae Kim,Donghee Kang,S. Blumstengel,Nicolas Zorn Morales,Emil List,Sang Wan Cho,Hyunbok Lee,Soohyung Park,Yeonjin Yi
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:10 (4) 被引量:1
标识
DOI:10.1063/5.0157930
摘要

Two-dimensional (2D) Ruddlesden–Popper (RP) perovskites hold great potential for novel optoelectronic applications. However, their unconventional optoelectronic properties are often compromised by a vulnerability to light irradiation, which leads to the formation of metallic Pb (Pb0) defects. This study investigates the passivation mechanism of these Pb0 defects in phenylethylammonium lead iodide (PEA2PbI4) using a strong molecular acceptor, 2,2′-(perfluoronaphthalene-2, 6-diylidene) dimalononitrile (F6-TCNNQ). In situ x-ray photoelectron spectroscopy results demonstrate that F6-TCNNQ effectively removes the light-induced Pb0 states, leading to the recovery of photoluminescence intensity in photodegraded PEA2PbI4 samples and significantly improving the photostability of pristine PEA2PbI4. F6-TCNNQ protects the terrace edge of PEA2PbI4, which is the site of initial degradation, as evidenced by atomic force microscopy and scanning electron microscopy analyses. In situ ultraviolet photoelectron spectroscopy measurements confirm substantial electron transfer from Pb0 to F6-TCNNQ, causing the oxidation of Pb0 to Pb2+. Furthermore, the staggered energy level alignment prevents electron transfer from the valence band maximum of PEA2PbI4 to the lowest unoccupied molecular orbital of F6-TCNNQ, thereby preserving the pristine electronic structure of PEA2PbI4. These findings provide new insights into defect passivation in 2D RP perovskites and offer a design strategy for highly stable optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
顾夏包完成签到,获得积分10
2秒前
小土豆发布了新的文献求助50
3秒前
科研通AI5应助跑在颖采纳,获得10
3秒前
追寻代真发布了新的文献求助10
4秒前
mrmrer完成签到,获得积分20
4秒前
4秒前
4秒前
毛慢慢发布了新的文献求助10
5秒前
5秒前
今天不学习明天变垃圾完成签到,获得积分10
5秒前
6秒前
6秒前
布布完成签到,获得积分10
7秒前
一独白发布了新的文献求助10
7秒前
周周完成签到 ,获得积分10
7秒前
淡然完成签到,获得积分10
8秒前
明理小土豆完成签到,获得积分10
8秒前
刘国建郭菱香完成签到,获得积分10
8秒前
嘤嘤嘤完成签到,获得积分10
8秒前
九川应助粱自中采纳,获得10
8秒前
无辜之卉完成签到,获得积分10
9秒前
无花果应助Island采纳,获得10
9秒前
9秒前
SHDeathlock发布了新的文献求助200
10秒前
Owen应助醒醒采纳,获得10
10秒前
无心的代桃完成签到,获得积分10
11秒前
追寻代真完成签到,获得积分10
11秒前
晓兴兴完成签到,获得积分10
11秒前
leon发布了新的文献求助10
12秒前
洽洽瓜子shine完成签到,获得积分10
12秒前
简单的大白菜真实的钥匙完成签到,获得积分10
13秒前
14秒前
一独白完成签到,获得积分10
15秒前
在水一方应助坚强的樱采纳,获得10
15秒前
慕青应助尼亚吉拉采纳,获得10
16秒前
快乐小白菜应助甜酱采纳,获得10
16秒前
16秒前
qq应助毛慢慢采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762