A novel anoikis‐related prognostic signature associated with prognosis and immune infiltration landscape in lung adenocarcinoma

失巢 腺癌 生存分析 肿瘤科 比例危险模型 医学 免疫系统 单变量分析 肺癌 转移 癌症研究 生物 多元分析 内科学 癌症 免疫学
作者
Yue Liu,Shiqi Hu,Mengmeng Teng,Qing Yang,Xiao Dong,Linsong Chen,Kaixing Ai
出处
期刊:Journal of Gene Medicine [Wiley]
卷期号:26 (1) 被引量:1
标识
DOI:10.1002/jgm.3610
摘要

Abstract Background One of the most prevalent malignancies in the world is lung adenocarcinoma (LUAD), with a large number of people dying from lung cancer each year. Anoikis has a crucial function in tumor metastasis, promoting cancer cell shedding and survival from the primary tumor site. However, the role of anoikis in LUAD is still unclear. Methods The GeneCard database ( https://www.genecards.org/ ) was utilized to obtain anoikis‐related genes with correlation greater than 0.4. Differential analysis was employed to acquire differential genes. Univariate, multifactorial Cox analyses and the least absolute shrinkage and selection operator were then utilized to capture genes connected to overall survival time. These genes were used to build prognostic models. The predictive model was analyzed and visualized. Survival analysis was conducted on the model and risk scores were calculated. The TCGA samples were split into groups of low and high risk depending on risk scores. A Gene Expression Omnibus database sample was used for external verification. Immunization estimates were performed using ESTIMATE, CiberSort and single sample gene set enrichment analysis. The connection between the prognostic gene model and immune cells was analyzed. Drug susceptibility prediction analysis was performed. The clinical information for samples was extracted and analyzed. Results We selected six genes related to anoikis in LUAD to construct a prognosis model (CDC25C, ITPRIP, SLCO1B3, CDX2, CSPG4 and PIK3CG). Compared with cases of high‐risk scores, the overall survival of those with low risk was significantly elevated based on Kaplan–Meier survival analysis. Immune function analysis exhibited that different risk groups had different immune states. The results of ESTIMATE, CiberSort and single sample gene set enrichment analysis showed great gaps in immunization between patients in the two groups. The normogram of the risk score and the LUAD clinicopathological features was constructed. Principal component analysis showed that this model could effectively distinguish the two groups of LUAD patients. Conclusions We integrated multiple anoikis‐related genes to build a prognostic model. This investigation demonstrates that anoikis‐related genes can be used as a stratification element for fine therapy of individuals with LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
稳重峻熙完成签到,获得积分10
1秒前
彭于晏应助优美紫槐采纳,获得10
1秒前
orixero应助JamesYang采纳,获得10
2秒前
4秒前
Akim应助XX采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
月来越好应助科研力力采纳,获得10
6秒前
xiaoya发布了新的文献求助10
6秒前
8秒前
8秒前
qq完成签到,获得积分10
9秒前
9秒前
11秒前
qq发布了新的文献求助10
12秒前
华仔应助YM采纳,获得10
12秒前
lutao发布了新的文献求助10
12秒前
12秒前
科研力力完成签到,获得积分20
13秒前
付红银发布了新的文献求助10
13秒前
清蒸三文鱼完成签到,获得积分10
13秒前
wzbc完成签到,获得积分10
15秒前
天天快乐应助Nivis采纳,获得10
17秒前
细心平卉完成签到,获得积分10
18秒前
18秒前
dzc发布了新的文献求助10
19秒前
hsa_ID发布了新的文献求助10
19秒前
20秒前
火星上香菇完成签到,获得积分10
20秒前
21秒前
Hello应助lutao采纳,获得10
21秒前
2220190143发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
JamesYang发布了新的文献求助10
24秒前
Yuanyuan发布了新的文献求助10
25秒前
XX发布了新的文献求助10
26秒前
安静妙芙发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420