Multi-view domain-adaptive representation learning for EEG-based emotion recognition

计算机科学 判别式 人工智能 模式识别(心理学) 鉴别器 卷积神经网络 脑电图 特征(语言学) 短时傅里叶变换 语音识别 机器学习 傅里叶变换 数学 心理学 精神科 数学分析 哲学 探测器 电信 傅里叶分析 语言学
作者
Chao Li,Ning Bian,Ziping Zhao,Haishuai Wang,Björn W. Schuller
出处
期刊:Information Fusion [Elsevier BV]
卷期号:104: 102156-102156 被引量:40
标识
DOI:10.1016/j.inffus.2023.102156
摘要

Current research suggests that there exist certain limitations in EEG emotion recognition, including redundant and meaningless time-frames and channels, as well as inter- and intra-individual differences in EEG signals from different subjects. To deal with these limitations, a Cross-attention-based Dilated Causal Convolutional Neural Network with Domain Discriminator (CADD-DCCNN) for multi-view EEG-based emotion recognition is proposed to minimize individual differences and automatically learn more discriminative emotion-related features. First, differential entropy (DE) features are obtained from the raw EEG signals using short-time Fourier transform (STFT). Second, each channel of the DE features is regarded as a view, and the attention mechanisms are utilized at different views to aggregate the discriminative affective information at the level of the time-frame of EEG. Then, a dilated causal convolutional neural network is employed to distill nonlinear relationships among different time frames. Next, a feature-level fusion is used to fuse features from multiple channels, aiming to explore the potential complementary information among different views and enhance the representational ability of the feature. Finally, to minimize individual differences, a domain discriminator is employed to generate domain-invariant features, which projects data from both the different domains into the same data representation space. We evaluated our proposed method on two public datasets, SEED and DEAP. The experimental results illustrate that our CADD-DCCNN method outperforms the SOTA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
to高坚果发布了新的文献求助10
1秒前
西门明雪完成签到,获得积分10
1秒前
自由的松发布了新的文献求助10
2秒前
4秒前
4秒前
olia发布了新的文献求助10
4秒前
Candice应助孤独树叶采纳,获得10
5秒前
YUJIALING完成签到 ,获得积分10
5秒前
酷波er应助tdtk采纳,获得10
5秒前
冰冰完成签到 ,获得积分20
6秒前
6秒前
6秒前
胡桃夹子发布了新的文献求助30
6秒前
7秒前
syxz0628发布了新的文献求助10
7秒前
都可以完成签到,获得积分10
7秒前
科研通AI5应助qfchen0716网易采纳,获得10
8秒前
JamesPei应助qfchen0716网易采纳,获得10
8秒前
丘比特应助qfchen0716网易采纳,获得10
8秒前
子川发布了新的文献求助10
8秒前
田様应助qfchen0716网易采纳,获得10
8秒前
科目三应助qfchen0716网易采纳,获得10
9秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
9秒前
rr发布了新的文献求助10
9秒前
科目三应助qfchen0716网易采纳,获得10
9秒前
Orange应助qfchen0716网易采纳,获得10
9秒前
FashionBoy应助qfchen0716网易采纳,获得10
9秒前
今后应助qfchen0716网易采纳,获得10
9秒前
汉堡包应助Rober采纳,获得10
9秒前
10秒前
12秒前
哈哈哈哈发布了新的文献求助10
12秒前
张大旭77发布了新的文献求助10
13秒前
15秒前
科研通AI5应助感动苡采纳,获得10
16秒前
雪山大地完成签到,获得积分10
16秒前
Beton_X发布了新的文献求助40
17秒前
18秒前
18秒前
嘿嘿嘿发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676