已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predictive binary mixture toxicity modeling of fluoroquinolones (FQs) and the projection of toxicity of hypothetical binary FQ mixtures: a combination of 2D-QSAR and machine-learning approaches

数量结构-活动关系 二进制数 毒性 投影(关系代数) 化学 人工智能 数学 计算机科学 机器学习 有机化学 算法 算术
作者
Mainak Chatterjee,Kunal Roy
出处
期刊:Environmental Science: Processes & Impacts [The Royal Society of Chemistry]
卷期号:26 (1): 105-118
标识
DOI:10.1039/d3em00445g
摘要

All sorts of chemicals get degraded under various environmental stresses, and the degradates coexist with the parent compounds as mixtures in the environment. Antibiotics emerge as an additional concern due to the bioactive nature of both the parent compound and degradation products and their combined exposure to the environment. Therefore, environmental risk assessment of antibiotics and their degradation products is very much necessary. In this direction, we made use of in silico new approach methodologies (NAMs) and machine-learning algorithms. In this study, we have developed a robust and predictive mixture-quantitative structure-activity relationship (QSAR) model with promising quality and predictability (internal: MAETrain = 0.085, QLOO2 = 0.849, external: MAETest = 0.090, and QF12 = 0.859) for predicting the toxicity of the mixtures of a class of antibiotics and their degradation products. To obtain the predictive model, toxicity data of 78 binary fluoroquinolone mixtures in E. coli (endpoint: log 1/IC50 in molar) have been utilized. We have used only 0D-2D descriptors to efficiently encode the structural features of mixture components without any additional complexities. The optimization of the class of mixture descriptors has been performed in this study by using three different mixing rules (linear combination of molecular contributions, the squared molecular contributions, and the norm of molecular contributions). Different machine-learning approaches namely, random forest (RF), ada boost, gradient boost (GB), extreme gradient boost (XGB), support vector machine (SVM), linear support vector machine (LSVM), and ridge regression (RR) have been employed here apart from the conventional partial least squares (PLS) regression to optimize the modeling approach. A rigorous validation protocol has been used for assessing the goodness-of-fit, robustness, and external predictability of the models. Finally, the toxicity of possible untested mixtures of different photodegradation products of fluoroquinolones has been predicted using the best model reported in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pterionGao完成签到 ,获得积分10
1秒前
2秒前
勤恳幻然完成签到,获得积分20
4秒前
orixero应助左丘幼旋1采纳,获得10
4秒前
杜萌萌发布了新的文献求助10
6秒前
帅气的沧海完成签到 ,获得积分10
7秒前
7秒前
Eid完成签到,获得积分10
10秒前
11秒前
外向思松关注了科研通微信公众号
11秒前
12秒前
lvsehx发布了新的文献求助10
15秒前
SumLemon发布了新的文献求助10
15秒前
16秒前
左丘幼旋1发布了新的文献求助10
17秒前
18秒前
杜萌萌完成签到,获得积分10
18秒前
20秒前
清新的芷发布了新的文献求助10
23秒前
YUAN121发布了新的文献求助20
23秒前
爆米花应助美好斓采纳,获得10
24秒前
陶醉觅夏发布了新的文献求助200
25秒前
27秒前
30秒前
开拖拉机的芍药完成签到 ,获得积分10
30秒前
郑子朔发布了新的文献求助10
32秒前
34秒前
外向思松发布了新的文献求助10
34秒前
36秒前
腼腆的老虎完成签到,获得积分10
38秒前
乐乐应助儿学化学打断腿采纳,获得10
40秒前
美好斓发布了新的文献求助10
42秒前
深情安青应助123采纳,获得10
43秒前
火星上的曼彤完成签到 ,获得积分10
44秒前
44秒前
左丘幼旋1完成签到,获得积分10
45秒前
清新的芷完成签到 ,获得积分10
47秒前
科研通AI2S应助美好斓采纳,获得10
48秒前
杨无敌完成签到 ,获得积分10
55秒前
陶醉薯片完成签到,获得积分10
57秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171381
求助须知:如何正确求助?哪些是违规求助? 2822343
关于积分的说明 7938824
捐赠科研通 2482830
什么是DOI,文献DOI怎么找? 1322807
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627