Predictive binary mixture toxicity modeling of fluoroquinolones (FQs) and the projection of toxicity of hypothetical binary FQ mixtures: a combination of 2D-QSAR and machine-learning approaches

数量结构-活动关系 二进制数 毒性 投影(关系代数) 化学 人工智能 数学 计算机科学 机器学习 有机化学 算法 算术
作者
Mainak Chatterjee,Kunal Roy
出处
期刊:Environmental Science: Processes & Impacts [Royal Society of Chemistry]
卷期号:26 (1): 105-118
标识
DOI:10.1039/d3em00445g
摘要

All sorts of chemicals get degraded under various environmental stresses, and the degradates coexist with the parent compounds as mixtures in the environment. Antibiotics emerge as an additional concern due to the bioactive nature of both the parent compound and degradation products and their combined exposure to the environment. Therefore, environmental risk assessment of antibiotics and their degradation products is very much necessary. In this direction, we made use of in silico new approach methodologies (NAMs) and machine-learning algorithms. In this study, we have developed a robust and predictive mixture-quantitative structure-activity relationship (QSAR) model with promising quality and predictability (internal: MAETrain = 0.085, QLOO2 = 0.849, external: MAETest = 0.090, and QF12 = 0.859) for predicting the toxicity of the mixtures of a class of antibiotics and their degradation products. To obtain the predictive model, toxicity data of 78 binary fluoroquinolone mixtures in E. coli (endpoint: log 1/IC50 in molar) have been utilized. We have used only 0D-2D descriptors to efficiently encode the structural features of mixture components without any additional complexities. The optimization of the class of mixture descriptors has been performed in this study by using three different mixing rules (linear combination of molecular contributions, the squared molecular contributions, and the norm of molecular contributions). Different machine-learning approaches namely, random forest (RF), ada boost, gradient boost (GB), extreme gradient boost (XGB), support vector machine (SVM), linear support vector machine (LSVM), and ridge regression (RR) have been employed here apart from the conventional partial least squares (PLS) regression to optimize the modeling approach. A rigorous validation protocol has been used for assessing the goodness-of-fit, robustness, and external predictability of the models. Finally, the toxicity of possible untested mixtures of different photodegradation products of fluoroquinolones has been predicted using the best model reported in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
基金中中中完成签到,获得积分10
4秒前
4秒前
6秒前
华仔应助55555555采纳,获得10
6秒前
8秒前
9秒前
玖Nine发布了新的文献求助10
10秒前
酷波er应助guguoxian采纳,获得10
10秒前
WHaha发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
55555555完成签到,获得积分10
13秒前
Jasper应助晴小阳采纳,获得10
14秒前
jingsihan完成签到,获得积分10
14秒前
会撒娇的羿完成签到,获得积分10
14秒前
lilililith应助土又鸟采纳,获得10
15秒前
16秒前
17秒前
v小飞侠101发布了新的文献求助10
18秒前
游戏人间完成签到 ,获得积分10
19秒前
20秒前
24秒前
小李找文献完成签到,获得积分10
25秒前
25秒前
26秒前
minever白完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
波比冰苏打完成签到,获得积分10
29秒前
30秒前
华仔应助玖Nine采纳,获得10
32秒前
上官若男应助玖Nine采纳,获得10
32秒前
Good_小鬼发布了新的文献求助10
33秒前
慕青应助v小飞侠101采纳,获得10
36秒前
晴小阳完成签到,获得积分10
36秒前
沙拉完成签到,获得积分10
38秒前
39秒前
清秀寇完成签到,获得积分10
41秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167