Critical Challenges with Copper Hybrid Bonding for Chip-to-Wafer Memory Stacking

薄脆饼 堆积 材料科学 化学机械平面化 晶片键合 光电子学 三维集成电路 退火(玻璃) 电子工程 复合材料 图层(电子) 集成电路 冶金 化学 工程类 有机化学
作者
Wei Zhou,Michael Kwon,Yingta Chiu,Huimin Guo,Bharat Bhushan,Bret Street,Kunal Parekh,Akshay Singh
标识
DOI:10.1109/ectc51909.2023.00063
摘要

Due to nonmature wafer yield and customer demand for high-number die stacking, the chip-to-wafer stacking process with only known good die is a preferred solution to advanced memory products like high bandwidth memory (HBM). However, great challenges will arise if one wants to integrate it with the copper hybrid bonding technology. The memory wafer will be diced into individual chips where large amount particles will be generated and harm the hybrid bonding. In addition, the stacking process will take hours to complete rather than seconds as in a wafer-to-wafer bonding. Hence, the plasma lasting effect will be key to success. Finally, the bottom interface (IF) wafer is usually supported by a temporary carrier to sustain the wafer handling. The current wafer support system (WSS) for the IF wafer employs an organic glue, which substantially limits the thermal budget that the memory die stacking can go through. As a result, only a low-temperature annealing is allowed and low-temperature dielectric materials added. With those constraints, it was found that a porous bonding layer was generated along the interface. Failure analysis further pointed out that Cu creeping occurred along this porous interface, which might lead to leakage. An innovative solution was proposed in this work to replace the current organic-based WSS with a thin inorganic film, which can accommodate a much higher process temperature. The chemical mechanical planarization (CMP) process is found benefited too by displaying a much more consistent copper dishing as well as a uniform dielectric profile. With this new WSS, a satisfactory chip-to-wafer copper hybrid bonding process has been achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昭昭完成签到 ,获得积分10
刚刚
科研小白完成签到,获得积分10
1秒前
汉堡包应助麦当当薯条采纳,获得10
1秒前
梁业松完成签到,获得积分20
1秒前
上官若男应助wallonce采纳,获得10
1秒前
2秒前
研友_Lmb15n发布了新的文献求助10
2秒前
小马甲应助可爱的弘文采纳,获得10
3秒前
琦酱完成签到,获得积分10
3秒前
又又s_1发布了新的文献求助10
4秒前
彭于晏应助wave采纳,获得30
4秒前
5秒前
哈哈哈完成签到,获得积分20
5秒前
努力发文章应助肥羊采纳,获得10
5秒前
666发布了新的文献求助10
5秒前
阿熙完成签到,获得积分10
5秒前
5秒前
6秒前
烟花应助打打杀杀的采纳,获得10
6秒前
大舟Austin发布了新的文献求助30
8秒前
搜集达人应助yhx采纳,获得10
8秒前
9秒前
小二郎应助又又s_1采纳,获得10
9秒前
wenwenwang完成签到 ,获得积分10
9秒前
哈哈哈发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
RF完成签到,获得积分10
15秒前
15秒前
苹果不平发布了新的文献求助10
16秒前
16秒前
英俊的铭应助666采纳,获得10
17秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501