Critical Challenges with Copper Hybrid Bonding for Chip-to-Wafer Memory Stacking

薄脆饼 堆积 材料科学 化学机械平面化 晶片键合 光电子学 三维集成电路 退火(玻璃) 电子工程 复合材料 图层(电子) 集成电路 冶金 化学 工程类 有机化学
作者
Wei Zhou,Michael Kwon,Yingta Chiu,Huimin Guo,Bharat Bhushan,Bret Street,Kunal Parekh,Akshay Singh
标识
DOI:10.1109/ectc51909.2023.00063
摘要

Due to nonmature wafer yield and customer demand for high-number die stacking, the chip-to-wafer stacking process with only known good die is a preferred solution to advanced memory products like high bandwidth memory (HBM). However, great challenges will arise if one wants to integrate it with the copper hybrid bonding technology. The memory wafer will be diced into individual chips where large amount particles will be generated and harm the hybrid bonding. In addition, the stacking process will take hours to complete rather than seconds as in a wafer-to-wafer bonding. Hence, the plasma lasting effect will be key to success. Finally, the bottom interface (IF) wafer is usually supported by a temporary carrier to sustain the wafer handling. The current wafer support system (WSS) for the IF wafer employs an organic glue, which substantially limits the thermal budget that the memory die stacking can go through. As a result, only a low-temperature annealing is allowed and low-temperature dielectric materials added. With those constraints, it was found that a porous bonding layer was generated along the interface. Failure analysis further pointed out that Cu creeping occurred along this porous interface, which might lead to leakage. An innovative solution was proposed in this work to replace the current organic-based WSS with a thin inorganic film, which can accommodate a much higher process temperature. The chemical mechanical planarization (CMP) process is found benefited too by displaying a much more consistent copper dishing as well as a uniform dielectric profile. With this new WSS, a satisfactory chip-to-wafer copper hybrid bonding process has been achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ewfr发布了新的文献求助10
1秒前
SciGPT应助Jankin采纳,获得10
1秒前
丘比特应助西洲采纳,获得10
1秒前
1秒前
1秒前
2秒前
大个应助彼岸采纳,获得10
2秒前
666发布了新的文献求助10
2秒前
3秒前
ZDM6094完成签到 ,获得积分10
3秒前
在水一方应助啊懂采纳,获得10
3秒前
善学以致用应助lchoxy采纳,获得10
3秒前
echo发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
lulufighting完成签到,获得积分10
4秒前
26937635完成签到,获得积分10
5秒前
DPH完成签到 ,获得积分10
6秒前
张雯雯发布了新的文献求助10
6秒前
缙云山2020发布了新的文献求助10
6秒前
6秒前
好好完成签到,获得积分10
6秒前
所所应助追梦小帅采纳,获得10
6秒前
精明高丽关注了科研通微信公众号
6秒前
麦麦发布了新的文献求助30
7秒前
7秒前
8秒前
8秒前
天空之城完成签到,获得积分10
8秒前
8秒前
nuli完成签到,获得积分10
8秒前
8秒前
汉堡包应助流光采纳,获得10
9秒前
cy完成签到,获得积分10
9秒前
9秒前
夹心酱的飞踢完成签到,获得积分10
9秒前
9秒前
善学以致用应助每㐬山风采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853