Evaluating the Stroke Risk of Patients using Machine Learning: A New Perspective from Sichuan and Chongqing

随机森林 冲程(发动机) 决策树 机器学习 人工智能 逻辑回归 公制(单位) 支持向量机 朴素贝叶斯分类器 召回 计算机科学 精确性和召回率 心理学 工程类 机械工程 认知心理学 运营管理
作者
Jin Zheng,Xiong Yao,Yimei Zheng,Haitao Zhang,Rui Wu
出处
期刊:Evaluation Review [SAGE]
卷期号:48 (2): 346-369 被引量:2
标识
DOI:10.1177/0193841x231193468
摘要

Stroke is the leading cause of death and disability among people in China, and it leads to heavy burdens for patients, their families and society. An accurate prediction of the risk of stroke has important implications for early intervention and treatment. In light of recent advances in machine learning, the application of this technique in stroke prediction has achieved plentiful promising results. To detect the relationship between potential factors and the risk of stroke and examine which machine learning method significantly can enhance the prediction accuracy of stroke. We employed six machine learning methods including logistic regression, naive Bayes, decision tree, random forest, K-nearest neighbor and support vector machine, to model and predict the risk of stroke. Participants were 233 patients from Sichuan and Chongqing. Four indicators (accuracy, precision, recall and F1 metric) were examined to evaluate the predictive performance of the different models. The empirical results indicate that random forest yields the best accuracy, recall and F1 in predicting the risk of stroke, with an accuracy of .7548, precision of .7805, recall of .7619 and F1 of .7711. Additionally, the findings show that age, cerebral infarction, PM 8 (an anti-atrial fibrillation drug), and drinking are independent risk factors for stroke. Further studies should adopt a broader assortment of machine learning methods to analyze the risk of stroke, by which better accuracy can be expected. In particular, RF can successfully enhance the forecasting accuracy for stroke.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小瑞完成签到,获得积分10
刚刚
开心蛋挞完成签到,获得积分10
刚刚
九局下半发布了新的文献求助10
1秒前
EVEN发布了新的文献求助10
1秒前
那你也完成签到,获得积分10
2秒前
顾矜应助Ernest采纳,获得30
3秒前
无花果应助北落采纳,获得10
3秒前
酷波er应助房天川采纳,获得20
4秒前
稳重盼夏完成签到,获得积分20
4秒前
CCMay发布了新的文献求助20
4秒前
万能图书馆应助Pendulium采纳,获得10
5秒前
科目三应助杨立胜采纳,获得10
5秒前
zzz完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
慕青应助古木采纳,获得10
6秒前
7秒前
懦弱的沛芹完成签到,获得积分10
8秒前
9秒前
天天快乐应助霸气的南晴采纳,获得10
9秒前
爱学习的叭叭完成签到,获得积分10
9秒前
桐桐应助han采纳,获得10
10秒前
future发布了新的文献求助10
10秒前
miao完成签到,获得积分10
10秒前
ieeat发布了新的文献求助10
12秒前
12秒前
12秒前
小二郎应助PP采纳,获得10
13秒前
洛绮云完成签到,获得积分10
13秒前
英吉利25发布了新的文献求助10
14秒前
orixero应助许xu采纳,获得10
14秒前
ZZJ111发布了新的文献求助20
14秒前
乐辰发布了新的文献求助10
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助30
15秒前
糖不太甜完成签到,获得积分10
16秒前
EVEN发布了新的文献求助10
16秒前
17秒前
科研欣路完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400