Evaluating the Stroke Risk of Patients using Machine Learning: A New Perspective from Sichuan and Chongqing

随机森林 冲程(发动机) 决策树 机器学习 人工智能 逻辑回归 公制(单位) 支持向量机 朴素贝叶斯分类器 召回 计算机科学 精确性和召回率 心理学 工程类 机械工程 运营管理 认知心理学
作者
Jin Zheng,Xiong Yao,Yimei Zheng,Haitao Zhang,Rui Wu
出处
期刊:Evaluation Review [SAGE]
卷期号:48 (2): 346-369 被引量:1
标识
DOI:10.1177/0193841x231193468
摘要

Stroke is the leading cause of death and disability among people in China, and it leads to heavy burdens for patients, their families and society. An accurate prediction of the risk of stroke has important implications for early intervention and treatment. In light of recent advances in machine learning, the application of this technique in stroke prediction has achieved plentiful promising results. To detect the relationship between potential factors and the risk of stroke and examine which machine learning method significantly can enhance the prediction accuracy of stroke. We employed six machine learning methods including logistic regression, naive Bayes, decision tree, random forest, K-nearest neighbor and support vector machine, to model and predict the risk of stroke. Participants were 233 patients from Sichuan and Chongqing. Four indicators (accuracy, precision, recall and F1 metric) were examined to evaluate the predictive performance of the different models. The empirical results indicate that random forest yields the best accuracy, recall and F1 in predicting the risk of stroke, with an accuracy of .7548, precision of .7805, recall of .7619 and F1 of .7711. Additionally, the findings show that age, cerebral infarction, PM 8 (an anti-atrial fibrillation drug), and drinking are independent risk factors for stroke. Further studies should adopt a broader assortment of machine learning methods to analyze the risk of stroke, by which better accuracy can be expected. In particular, RF can successfully enhance the forecasting accuracy for stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxd发布了新的文献求助10
1秒前
上官若男应助浅笑采纳,获得10
2秒前
英姑应助Lxxixixi采纳,获得10
2秒前
斯文败类应助lichaoyes采纳,获得10
2秒前
aaaaa完成签到,获得积分10
2秒前
唉呦嘿发布了新的文献求助10
3秒前
共享精神应助迅速宛筠采纳,获得10
3秒前
上上谦应助酷炫过客采纳,获得10
3秒前
脑洞疼应助酷炫过客采纳,获得10
4秒前
千幻发布了新的文献求助10
4秒前
4秒前
5秒前
英俊的铭应助俎树同采纳,获得10
6秒前
6秒前
liyiren完成签到,获得积分10
7秒前
7秒前
k7完成签到,获得积分10
7秒前
bc发布了新的文献求助10
7秒前
cui123完成签到 ,获得积分10
8秒前
8秒前
9秒前
乐乐应助学海无涯采纳,获得10
9秒前
wxd完成签到,获得积分10
9秒前
嗯嗯嗯完成签到,获得积分10
10秒前
yf_zhu关注了科研通微信公众号
10秒前
mtfx完成签到 ,获得积分10
10秒前
10秒前
帅气惜霜给帅气惜霜的求助进行了留言
10秒前
10秒前
11秒前
11秒前
12秒前
龙华之士发布了新的文献求助10
12秒前
bc完成签到,获得积分10
13秒前
H71000A发布了新的文献求助10
13秒前
dollarpuff完成签到,获得积分10
13秒前
科研通AI5应助当时明月在采纳,获得10
13秒前
yipyip完成签到,获得积分20
13秒前
Lxxixixi发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762