Evaluating the Stroke Risk of Patients using Machine Learning: A New Perspective from Sichuan and Chongqing

随机森林 冲程(发动机) 决策树 机器学习 人工智能 逻辑回归 公制(单位) 支持向量机 朴素贝叶斯分类器 召回 计算机科学 精确性和召回率 心理学 工程类 机械工程 认知心理学 运营管理
作者
Jin Zheng,Xiong Yao,Yimei Zheng,Haitao Zhang,Rui Wu
出处
期刊:Evaluation Review [SAGE]
卷期号:48 (2): 346-369 被引量:1
标识
DOI:10.1177/0193841x231193468
摘要

Stroke is the leading cause of death and disability among people in China, and it leads to heavy burdens for patients, their families and society. An accurate prediction of the risk of stroke has important implications for early intervention and treatment. In light of recent advances in machine learning, the application of this technique in stroke prediction has achieved plentiful promising results. To detect the relationship between potential factors and the risk of stroke and examine which machine learning method significantly can enhance the prediction accuracy of stroke. We employed six machine learning methods including logistic regression, naive Bayes, decision tree, random forest, K-nearest neighbor and support vector machine, to model and predict the risk of stroke. Participants were 233 patients from Sichuan and Chongqing. Four indicators (accuracy, precision, recall and F1 metric) were examined to evaluate the predictive performance of the different models. The empirical results indicate that random forest yields the best accuracy, recall and F1 in predicting the risk of stroke, with an accuracy of .7548, precision of .7805, recall of .7619 and F1 of .7711. Additionally, the findings show that age, cerebral infarction, PM 8 (an anti-atrial fibrillation drug), and drinking are independent risk factors for stroke. Further studies should adopt a broader assortment of machine learning methods to analyze the risk of stroke, by which better accuracy can be expected. In particular, RF can successfully enhance the forecasting accuracy for stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lai发布了新的文献求助10
刚刚
1秒前
1秒前
李健应助科研采纳,获得10
1秒前
NexusExplorer应助kais采纳,获得10
1秒前
简单如容发布了新的文献求助10
1秒前
轻松真完成签到,获得积分10
2秒前
MAD666发布了新的文献求助10
2秒前
斯文败类应助弄井采纳,获得10
2秒前
阿文在读研关注了科研通微信公众号
2秒前
森宝完成签到,获得积分10
2秒前
竭缘完成签到,获得积分10
4秒前
4秒前
好困应助shionn采纳,获得20
4秒前
ssssYyyy发布了新的文献求助10
4秒前
十三发布了新的文献求助10
5秒前
6秒前
小李同学发布了新的文献求助10
6秒前
JQ发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
Jasper应助妞妞采纳,获得10
10秒前
梦幻时空完成签到,获得积分10
10秒前
寻道图强应助UP采纳,获得50
10秒前
xzx完成签到,获得积分10
10秒前
SZK完成签到,获得积分10
11秒前
斯文思柔关注了科研通微信公众号
11秒前
开开发布了新的文献求助30
11秒前
aaaacc完成签到,获得积分20
12秒前
Ilyas0525完成签到,获得积分10
13秒前
心灵美的幼珊完成签到,获得积分10
13秒前
14秒前
Alvin发布了新的文献求助10
14秒前
HDJNCVJFKD发布了新的文献求助20
14秒前
14秒前
syyyao完成签到 ,获得积分10
14秒前
西西弗发布了新的文献求助10
15秒前
16秒前
流年发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655