The self‐distillation trained multitask dense‐attention network for diagnosing lung cancers based on CT scans

计算机科学 人工智能 计算机断层摄影术 蒸馏 医学物理学 放射科 医学 化学 有机化学
作者
Liuyin Chen,Zijun Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1738-1753 被引量:3
标识
DOI:10.1002/mp.16736
摘要

Abstract Background The latest international multidisciplinary histopathological classification of lung cancer indicates that a deeper study of the lung adenocarcinoma requires a comprehensive multidisciplinary platform. However, in the traditional pathological examination or previous computer‐vision‐based research, the entire lung is not considered in a comprehensive manner. Purpose The study aims to develop a deep learning model proposed for diagnosing the lung adenocarcinoma histopathologically based on CT scans. Instead of just classifying the lung adenocarcinoma, the pathological report should be inferred based on both the invasiveness and growth pattern of the tumors. Methods A self‐distillation trained multitask dense‐attention network (SD‐MdaNet) is proposed and validated based on 2412 labeled CT scans from 476 patients and 845 unlabeled scans. Inferring the pathological report is divided into two tasks, predicting the invasiveness of the lung tumor and inferring growth patterns of tumor cells in a comprehensive histopathological subtyping manner with excellent accuracy. In the proposed method, the dense‐attention module is introduced to better extract features from a small dataset in the main branch of the MdaNet. Next, task‐specific attention modules are utilized in different branches and finally integrated as a multitask model. The second task is a blend of classification and regression tasks. Thus, a specialized loss function is developed. In the proposed knowledge distillation (KD) process, the MdaNet as well as its main branch trained for solving two single tasks, respectively, are treated as multiple teachers to produce a student model. A novel KD loss function is developed to take the advantage of all the models as well as data with labels and without labels. Results SD‐MdaNet achieves an AUC of on invasiveness prediction, and on predominant growth pattern prediction on our dataset. Moreover, the average mean squared error in inferring growth pattern proportion reaches , and the AUC for predominant growth pattern proportion reaches . The proposed SD‐MdaNet is significantly better than all other benchmarking methods (). Conclusions Experimental results demonstrate that the proposed SD‐MdaNet can significantly improve the performance of the lung adenocarcinoma pathological diagnosis using only CT scans. Analyses and discussions are conducted to interpret the advantages of the SD‐MdaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xianyaoz完成签到 ,获得积分0
3秒前
杨远杰完成签到,获得积分10
4秒前
蓝桉完成签到 ,获得积分10
4秒前
JuliaWang完成签到 ,获得积分10
11秒前
无限的含羞草完成签到,获得积分10
12秒前
八二力完成签到 ,获得积分10
16秒前
韭菜发布了新的文献求助10
19秒前
情怀应助科研通管家采纳,获得30
22秒前
water应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
2012csc完成签到 ,获得积分0
24秒前
风清扬应助韭菜采纳,获得10
25秒前
WSY完成签到 ,获得积分10
26秒前
虞无声发布了新的文献求助10
27秒前
执着新蕾完成签到,获得积分10
29秒前
Vivian完成签到 ,获得积分10
32秒前
666完成签到 ,获得积分10
34秒前
39秒前
量子星尘发布了新的文献求助10
42秒前
蔡从安完成签到,获得积分10
42秒前
奥雷里亚诺完成签到 ,获得积分10
42秒前
不呆完成签到 ,获得积分10
43秒前
Cheung2121发布了新的文献求助30
43秒前
画龙完成签到,获得积分10
44秒前
韭菜完成签到,获得积分20
45秒前
Owen应助Cheung2121采纳,获得10
48秒前
爱学习的小李完成签到 ,获得积分10
53秒前
若水完成签到 ,获得积分10
53秒前
SYLH应助tian采纳,获得10
53秒前
脑洞疼应助tian采纳,获得10
54秒前
Ava应助tian采纳,获得10
54秒前
领导范儿应助tian采纳,获得10
54秒前
桐桐应助tian采纳,获得10
54秒前
乐乐应助tian采纳,获得10
54秒前
乐乐应助tian采纳,获得10
54秒前
wbscz应助tian采纳,获得10
54秒前
ding应助tian采纳,获得10
54秒前
54秒前
研友_LBRPOL完成签到,获得积分10
56秒前
gao完成签到 ,获得积分10
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022