亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The self‐distillation trained multitask dense‐attention network for diagnosing lung cancers based on CT scans

计算机科学 亚型 腺癌 人工智能 任务(项目管理) 病态的 肺癌 机器学习 深度学习 功能(生物学) 过程(计算) 模式识别(心理学) 癌症 病理 医学 生物 工程类 进化生物学 程序设计语言 系统工程 内科学 操作系统
作者
Liuyin Chen,Zijun Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1738-1753 被引量:1
标识
DOI:10.1002/mp.16736
摘要

The latest international multidisciplinary histopathological classification of lung cancer indicates that a deeper study of the lung adenocarcinoma requires a comprehensive multidisciplinary platform. However, in the traditional pathological examination or previous computer-vision-based research, the entire lung is not considered in a comprehensive manner.The study aims to develop a deep learning model proposed for diagnosing the lung adenocarcinoma histopathologically based on CT scans. Instead of just classifying the lung adenocarcinoma, the pathological report should be inferred based on both the invasiveness and growth pattern of the tumors.A self-distillation trained multitask dense-attention network (SD-MdaNet) is proposed and validated based on 2412 labeled CT scans from 476 patients and 845 unlabeled scans. Inferring the pathological report is divided into two tasks, predicting the invasiveness of the lung tumor and inferring growth patterns of tumor cells in a comprehensive histopathological subtyping manner with excellent accuracy. In the proposed method, the dense-attention module is introduced to better extract features from a small dataset in the main branch of the MdaNet. Next, task-specific attention modules are utilized in different branches and finally integrated as a multitask model. The second task is a blend of classification and regression tasks. Thus, a specialized loss function is developed. In the proposed knowledge distillation (KD) process, the MdaNet as well as its main branch trained for solving two single tasks, respectively, are treated as multiple teachers to produce a student model. A novel KD loss function is developed to take the advantage of all the models as well as data with labels and without labels.SD-MdaNet achieves an AUC of 98.7±0.4%$98.7\pm 0.4\%$ on invasiveness prediction, and 91.6±1.0%$91.6\pm 1.0\%$ on predominant growth pattern prediction on our dataset. Moreover, the average mean squared error in inferring growth pattern proportion reaches 0.0217±0.0019$0.0217\pm 0.0019$ , and the AUC for predominant growth pattern proportion reaches 91.6±1.0%$91.6\pm 1.0\%$ . The proposed SD-MdaNet is significantly better than all other benchmarking methods ( FDR<0.05$FDR<0.05$ ).Experimental results demonstrate that the proposed SD-MdaNet can significantly improve the performance of the lung adenocarcinoma pathological diagnosis using only CT scans. Analyses and discussions are conducted to interpret the advantages of the SD-MdaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunshine发布了新的文献求助10
9秒前
茶茶完成签到,获得积分10
1分钟前
2分钟前
田様应助sunshine采纳,获得10
2分钟前
2分钟前
科研雪瑞发布了新的文献求助30
2分钟前
余十一发布了新的文献求助10
3分钟前
3分钟前
sunshine发布了新的文献求助10
3分钟前
酷波er应助科研雪瑞采纳,获得30
3分钟前
科目三应助lourahan采纳,获得10
4分钟前
聪慧青筠完成签到,获得积分10
4分钟前
4分钟前
lourahan发布了新的文献求助10
4分钟前
李健应助BEGIN采纳,获得30
4分钟前
5分钟前
BEGIN发布了新的文献求助30
5分钟前
SCI完成签到,获得积分10
6分钟前
852应助BEGIN采纳,获得10
6分钟前
wangw061完成签到,获得积分10
6分钟前
顺利白竹完成签到 ,获得积分10
6分钟前
GR完成签到,获得积分10
7分钟前
Esperanza完成签到,获得积分10
7分钟前
7分钟前
7分钟前
BEGIN发布了新的文献求助10
7分钟前
无花果应助BEGIN采纳,获得10
8分钟前
8分钟前
小马甲应助sunshine采纳,获得10
8分钟前
冬去春来完成签到 ,获得积分10
9分钟前
9分钟前
BEGIN发布了新的文献求助10
9分钟前
坚强的小蘑菇完成签到,获得积分20
9分钟前
9分钟前
科研雪瑞发布了新的文献求助30
9分钟前
希望天下0贩的0应助BEGIN采纳,获得10
9分钟前
9分钟前
sunshine发布了新的文献求助10
9分钟前
NexusExplorer应助sunshine采纳,获得10
10分钟前
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294578
求助须知:如何正确求助?哪些是违规求助? 2930483
关于积分的说明 8446093
捐赠科研通 2602677
什么是DOI,文献DOI怎么找? 1420700
科研通“疑难数据库(出版商)”最低求助积分说明 660658
邀请新用户注册赠送积分活动 643433