The self‐distillation trained multitask dense‐attention network for diagnosing lung cancers based on CT scans

计算机科学 人工智能 计算机断层摄影术 蒸馏 医学物理学 放射科 医学 化学 有机化学
作者
Liuyin Chen,Zijun Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1738-1753 被引量:3
标识
DOI:10.1002/mp.16736
摘要

Abstract Background The latest international multidisciplinary histopathological classification of lung cancer indicates that a deeper study of the lung adenocarcinoma requires a comprehensive multidisciplinary platform. However, in the traditional pathological examination or previous computer‐vision‐based research, the entire lung is not considered in a comprehensive manner. Purpose The study aims to develop a deep learning model proposed for diagnosing the lung adenocarcinoma histopathologically based on CT scans. Instead of just classifying the lung adenocarcinoma, the pathological report should be inferred based on both the invasiveness and growth pattern of the tumors. Methods A self‐distillation trained multitask dense‐attention network (SD‐MdaNet) is proposed and validated based on 2412 labeled CT scans from 476 patients and 845 unlabeled scans. Inferring the pathological report is divided into two tasks, predicting the invasiveness of the lung tumor and inferring growth patterns of tumor cells in a comprehensive histopathological subtyping manner with excellent accuracy. In the proposed method, the dense‐attention module is introduced to better extract features from a small dataset in the main branch of the MdaNet. Next, task‐specific attention modules are utilized in different branches and finally integrated as a multitask model. The second task is a blend of classification and regression tasks. Thus, a specialized loss function is developed. In the proposed knowledge distillation (KD) process, the MdaNet as well as its main branch trained for solving two single tasks, respectively, are treated as multiple teachers to produce a student model. A novel KD loss function is developed to take the advantage of all the models as well as data with labels and without labels. Results SD‐MdaNet achieves an AUC of on invasiveness prediction, and on predominant growth pattern prediction on our dataset. Moreover, the average mean squared error in inferring growth pattern proportion reaches , and the AUC for predominant growth pattern proportion reaches . The proposed SD‐MdaNet is significantly better than all other benchmarking methods (). Conclusions Experimental results demonstrate that the proposed SD‐MdaNet can significantly improve the performance of the lung adenocarcinoma pathological diagnosis using only CT scans. Analyses and discussions are conducted to interpret the advantages of the SD‐MdaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的大碗应助明理念桃采纳,获得20
刚刚
1秒前
meng完成签到,获得积分10
1秒前
学者完成签到,获得积分10
1秒前
英俊的铭应助愉快盼曼采纳,获得10
2秒前
2秒前
小媛完成签到 ,获得积分10
3秒前
学术小白完成签到,获得积分20
3秒前
赘婿应助xiaomeng采纳,获得10
3秒前
Khr1stINK发布了新的文献求助10
3秒前
清新的苑博完成签到,获得积分10
3秒前
4秒前
果果瑞宁发布了新的文献求助10
5秒前
阿美发布了新的文献求助30
7秒前
7秒前
Jocelyn7完成签到,获得积分10
8秒前
wanyanjin应助yaoyao采纳,获得10
9秒前
Stephanie完成签到,获得积分20
9秒前
C_Cppp发布了新的文献求助10
9秒前
大抽是谁完成签到,获得积分10
9秒前
10秒前
Q0应助Hangerli采纳,获得20
10秒前
10秒前
黎土土发布了新的文献求助50
12秒前
12秒前
大抽是谁发布了新的文献求助10
13秒前
13秒前
李健的小迷弟应助公茂源采纳,获得30
13秒前
失眠的凝雁完成签到,获得积分10
13秒前
科研通AI5应助赖道之采纳,获得10
13秒前
Menand完成签到,获得积分10
14秒前
学者发布了新的文献求助10
14秒前
清新完成签到,获得积分10
14秒前
陶弈衡完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
愉快盼曼发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808