已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The self‐distillation trained multitask dense‐attention network for diagnosing lung cancers based on CT scans

计算机科学 人工智能 计算机断层摄影术 蒸馏 医学物理学 放射科 医学 化学 有机化学
作者
Liuyin Chen,Zijun Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (3): 1738-1753 被引量:3
标识
DOI:10.1002/mp.16736
摘要

Abstract Background The latest international multidisciplinary histopathological classification of lung cancer indicates that a deeper study of the lung adenocarcinoma requires a comprehensive multidisciplinary platform. However, in the traditional pathological examination or previous computer‐vision‐based research, the entire lung is not considered in a comprehensive manner. Purpose The study aims to develop a deep learning model proposed for diagnosing the lung adenocarcinoma histopathologically based on CT scans. Instead of just classifying the lung adenocarcinoma, the pathological report should be inferred based on both the invasiveness and growth pattern of the tumors. Methods A self‐distillation trained multitask dense‐attention network (SD‐MdaNet) is proposed and validated based on 2412 labeled CT scans from 476 patients and 845 unlabeled scans. Inferring the pathological report is divided into two tasks, predicting the invasiveness of the lung tumor and inferring growth patterns of tumor cells in a comprehensive histopathological subtyping manner with excellent accuracy. In the proposed method, the dense‐attention module is introduced to better extract features from a small dataset in the main branch of the MdaNet. Next, task‐specific attention modules are utilized in different branches and finally integrated as a multitask model. The second task is a blend of classification and regression tasks. Thus, a specialized loss function is developed. In the proposed knowledge distillation (KD) process, the MdaNet as well as its main branch trained for solving two single tasks, respectively, are treated as multiple teachers to produce a student model. A novel KD loss function is developed to take the advantage of all the models as well as data with labels and without labels. Results SD‐MdaNet achieves an AUC of on invasiveness prediction, and on predominant growth pattern prediction on our dataset. Moreover, the average mean squared error in inferring growth pattern proportion reaches , and the AUC for predominant growth pattern proportion reaches . The proposed SD‐MdaNet is significantly better than all other benchmarking methods (). Conclusions Experimental results demonstrate that the proposed SD‐MdaNet can significantly improve the performance of the lung adenocarcinoma pathological diagnosis using only CT scans. Analyses and discussions are conducted to interpret the advantages of the SD‐MdaNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
CodeCraft应助后会无期采纳,获得10
4秒前
HAI完成签到,获得积分10
5秒前
7秒前
7秒前
一天完成签到 ,获得积分10
7秒前
小点点完成签到,获得积分20
9秒前
科研通AI6应助HAI采纳,获得10
11秒前
汉堡包应助后会无期采纳,获得10
12秒前
万默完成签到 ,获得积分10
13秒前
不要慌完成签到 ,获得积分10
14秒前
犹豫幻丝完成签到,获得积分10
16秒前
16秒前
咕哒猫应助wqiao2010采纳,获得10
16秒前
九珥完成签到 ,获得积分10
17秒前
小豆豆完成签到,获得积分10
19秒前
汉堡包应助科研通管家采纳,获得10
21秒前
Criminology34应助科研通管家采纳,获得10
21秒前
22秒前
jianghs完成签到,获得积分10
22秒前
一只熊完成签到 ,获得积分10
23秒前
26秒前
27秒前
wqiao2010完成签到,获得积分10
27秒前
山楂球发布了新的文献求助10
27秒前
天真的路灯完成签到,获得积分10
29秒前
tong发布了新的文献求助10
29秒前
www完成签到,获得积分10
32秒前
33秒前
lmplzzp完成签到,获得积分10
35秒前
wlei完成签到,获得积分10
36秒前
虾球发布了新的文献求助30
38秒前
lcw1998发布了新的文献求助10
38秒前
39秒前
39秒前
41秒前
Eileen完成签到 ,获得积分0
41秒前
FashionBoy应助科研小巴采纳,获得30
42秒前
楠楠2001完成签到 ,获得积分10
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627676
求助须知:如何正确求助?哪些是违规求助? 4714380
关于积分的说明 14962946
捐赠科研通 4785322
什么是DOI,文献DOI怎么找? 2555072
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476841