法拉第效率
电解质
锂(药物)
乙醚
材料科学
溶剂
化学工程
插层(化学)
阳极
二甲醚
无机化学
化学
电极
有机化学
物理化学
甲醇
医学
工程类
内分泌学
作者
Zhicheng Wang,Ran Han,Dan Huang,Yumeng Wei,Haiqi Song,Yang Liu,Jiangyan Xue,Haiyang Zhang,Fengrui Zhang,Lingwang Liu,Shixiao Weng,Suwan Lu,Jingjing Xu,Xiaodong Wu,Zhixiang Wei
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-09-07
卷期号:17 (18): 18103-18113
被引量:21
标识
DOI:10.1021/acsnano.3c04907
摘要
Ether-based electrolytes are competitive choices to meet the growing requirements for fast-charging and low-temperature lithium-ion batteries (LIBs) due to the low viscosity and low melting point of ether solvents. Unfortunately, the graphite (Gr) electrode is incompatible with commonly used ether solvents due to their irreversible co-intercalation into Gr interlayers. Here, we propose cyclopentyl methyl ether (CPME) as a co-intercalation-free ether solvent, which contains a cyclopentane group with large steric hindrance to obtain weakly solvating power with Li+ and a wide liquid-phase temperature range (-140 to +106 °C). A weakly solvating electrolyte (WSE) based on CPME and fluoroethylene carbonate (FEC) cosolvents can simultaneously achieve fast desolvation ability and high ionic conductivity, which also induces a LiF-rich solid electrolyte interphase (SEI) on the Gr anode. Therefore, the Gr/Li half-cell with this WSE can deliver outstanding rate capability, stable cycling performance, and high specific capacity (319 mAh g-1) at an ultralow temperature of -60 °C. Furthermore, a practical LiFePO4 (loading ≈25 mg cm-2)/Gr (loading ≈12 mg cm-2) pouch cell with this WSE also reveals outstanding rate capability and stable long-term cycling performance above 1000 cycles with a high Coulombic efficiency (≈99.9%) and achieves an impressive low-temperature application potential at -60 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI