Explainable molecular simulation and machine learning for carbon dioxide adsorption on magnesium oxide

吸附 分子动力学 材料科学 氧化物 均方误差 二氧化碳 分子描述符 计算机科学 热力学 化学 物理化学 机器学习 计算化学 数量结构-活动关系 数学 有机化学 物理 统计 冶金
作者
Honglei Yu,Dexi Wang,Yunlong Li,Gong Chen,Xueyi Ma
出处
期刊:Fuel [Elsevier BV]
卷期号:357: 129725-129725 被引量:12
标识
DOI:10.1016/j.fuel.2023.129725
摘要

The effects of the adsorption energy of CO2 within MgO at different temperatures were investigated by molecular dynamics simulations and experimentally verified. The adsorption mechanism of CO2 within MgO was discussed and explained qualitatively. The results indicated that the diffusive adsorption of CO2 by MgO was divided into two stages, and the ability of CO2 capture by the cubic MgO performed better than that by spherical MgO. The adsorption of CO2 by the cubic MgO was mainly physical and received the inhibited adsorption behavior at the high-temperature stage (>505 K). Herein, we established a comprehensive dataset of adsorption energies and quantitatively analyzed an adsorption energy prediction model using machine learning techniques. The results demonstrated that Decision Tree Regression (DTR) and K-nearest neighbor (KNN) algorithms offer satisfactory accuracy based on root mean square error (RMSE) and R2 evaluations. This approach enables efficient and precise prediction of adsorption energies without the need for labor-intensive molecular dynamics calculations. Furthermore, we explored the influence of various features (Crystal structure, The number of Mg, The number of CO2, Temperature, Pressure, Volume, and Bond energy) on prediction performance. Lastly, we globally evaluated the relative contributions of each feature across four sets of relatively effective algorithms. This comprehensive analysis enhances our understanding of the adsorption mechanism of magnesium oxide on carbon dioxide and provides valuable insights to guide the design of the next generation of high-performance magnesium oxide materials for carbon capture and storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研狗完成签到 ,获得积分0
2秒前
彭彭完成签到,获得积分20
2秒前
苏打发布了新的文献求助10
3秒前
saisai发布了新的文献求助20
4秒前
小蘑菇应助潘潘采纳,获得10
5秒前
5秒前
orixero应助鲜艳的皮皮虾采纳,获得10
6秒前
Benzhdw发布了新的文献求助10
7秒前
8秒前
9秒前
吉坡发布了新的文献求助10
9秒前
12秒前
默默碧空发布了新的文献求助10
13秒前
14秒前
Vo发布了新的文献求助10
14秒前
wanci应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
17秒前
华仔应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得30
17秒前
逸之狐应助科研通管家采纳,获得20
17秒前
KY Mr.WANG完成签到,获得积分10
17秒前
核桃应助科研通管家采纳,获得10
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
柯一一应助科研通管家采纳,获得10
18秒前
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
18秒前
Liberty完成签到,获得积分10
18秒前
19秒前
21秒前
Benzhdw完成签到,获得积分10
23秒前
24秒前
拼搏篮球发布了新的文献求助10
24秒前
科研闲人完成签到,获得积分10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382