Explainable molecular simulation and machine learning for carbon dioxide adsorption on magnesium oxide

吸附 分子动力学 材料科学 氧化物 均方误差 二氧化碳 分子描述符 计算机科学 热力学 化学 物理化学 机器学习 计算化学 数量结构-活动关系 数学 有机化学 物理 统计 冶金
作者
Honglei Yu,Dexi Wang,Yunlong Li,Gong Chen,Xueyi Ma
出处
期刊:Fuel [Elsevier]
卷期号:357: 129725-129725 被引量:9
标识
DOI:10.1016/j.fuel.2023.129725
摘要

The effects of the adsorption energy of CO2 within MgO at different temperatures were investigated by molecular dynamics simulations and experimentally verified. The adsorption mechanism of CO2 within MgO was discussed and explained qualitatively. The results indicated that the diffusive adsorption of CO2 by MgO was divided into two stages, and the ability of CO2 capture by the cubic MgO performed better than that by spherical MgO. The adsorption of CO2 by the cubic MgO was mainly physical and received the inhibited adsorption behavior at the high-temperature stage (>505 K). Herein, we established a comprehensive dataset of adsorption energies and quantitatively analyzed an adsorption energy prediction model using machine learning techniques. The results demonstrated that Decision Tree Regression (DTR) and K-nearest neighbor (KNN) algorithms offer satisfactory accuracy based on root mean square error (RMSE) and R2 evaluations. This approach enables efficient and precise prediction of adsorption energies without the need for labor-intensive molecular dynamics calculations. Furthermore, we explored the influence of various features (Crystal structure, The number of Mg, The number of CO2, Temperature, Pressure, Volume, and Bond energy) on prediction performance. Lastly, we globally evaluated the relative contributions of each feature across four sets of relatively effective algorithms. This comprehensive analysis enhances our understanding of the adsorption mechanism of magnesium oxide on carbon dioxide and provides valuable insights to guide the design of the next generation of high-performance magnesium oxide materials for carbon capture and storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
土豆丝完成签到 ,获得积分10
1秒前
念念完成签到,获得积分10
1秒前
乐乐应助starry采纳,获得10
1秒前
温暖冰珍完成签到 ,获得积分10
1秒前
淳之风完成签到,获得积分20
2秒前
CarterXD应助hao采纳,获得30
2秒前
科研rain完成签到 ,获得积分10
2秒前
2秒前
清爽忆山发布了新的文献求助10
3秒前
睡觉晒太阳完成签到,获得积分10
3秒前
andy完成签到,获得积分10
3秒前
3秒前
Itachi12138完成签到,获得积分10
3秒前
CipherSage应助蓝莓松饼采纳,获得10
3秒前
3秒前
团团完成签到,获得积分10
3秒前
追寻的易烟完成签到,获得积分10
3秒前
snow完成签到,获得积分10
4秒前
4秒前
4秒前
1111完成签到,获得积分20
5秒前
爆米花应助笑点低蜜蜂采纳,获得10
5秒前
橘子味汽水完成签到 ,获得积分10
5秒前
Victor陈完成签到,获得积分10
5秒前
5秒前
seed85完成签到,获得积分10
5秒前
最初完成签到,获得积分20
6秒前
Hello应助Chem is try采纳,获得10
6秒前
hhh发布了新的文献求助10
6秒前
6秒前
7秒前
落寞白曼完成签到,获得积分10
8秒前
8秒前
海鸥海鸥发布了新的文献求助10
9秒前
别让我误会完成签到 ,获得积分10
10秒前
10秒前
KK发布了新的文献求助30
10秒前
娃娃完成签到 ,获得积分20
10秒前
科研通AI5应助结实的冰真采纳,获得30
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672