亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Design of New Inorganic Crystals with the Desired Composition Using Deep Learning

自编码 Crystal(编程语言) 生成语法 Atom(片上系统) 生成模型 材料科学 晶体结构预测 扩散 计算机科学 作文(语言) 航程(航空) 人工智能 晶体结构 算法 深度学习 统计物理学 生物系统 化学 结晶学 热力学 物理 语言学 哲学 生物 程序设计语言 复合材料 嵌入式系统
作者
Seunghee Han,Jaewan Lee,Sehui Han,Seyed Mohamad Moosavi,Jihan Kim,Chang-Young Park
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (18): 5755-5763 被引量:3
标识
DOI:10.1021/acs.jcim.3c00935
摘要

New solid-state materials have been discovered using various approaches from atom substitution in density functional theory (DFT) to generative models in machine learning. Recently, generative models have shown promising performance in finding new materials. Crystal generation with deep learning has been applied in various methods to discover new crystals. However, most generative models can only be applied to materials with specific elements or generate structures with random compositions. In this work, we developed a model that can generate crystals with desired compositions based on a crystal diffusion variational autoencoder. We generated crystal structures for 14 compositions of three types of materials in different applications. The generated structures were further stabilized using DFT calculations. We found the most stable structures in the existing database for all but one composition, even though eight compositions among them were not in the data set trained in a crystal diffusion variational autoencoder. This substantiates the prospect of the generation of an extensive range of compositions. Finally, 205 unique new crystal materials with energy above hull <100 meV/atom were generated. Moreover, we compared the average formation energy of the crystals generated from five compositions, two of which were hypothetical, with that of traditional methods like atom substitution and a generative model. The generated structures had lower formation energy than those of other models, except for one composition. These results demonstrate that our approach can be applied stably in various fields to design stable inorganic materials based on machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
聪明怜阳发布了新的文献求助10
35秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
BowieHuang应助科研通管家采纳,获得10
40秒前
BowieHuang应助科研通管家采纳,获得10
40秒前
涛1完成签到 ,获得积分10
1分钟前
2分钟前
xt发布了新的文献求助30
3分钟前
4分钟前
JoeyJin完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
BowieHuang应助无风风采纳,获得10
4分钟前
4分钟前
5分钟前
无极微光应助无风风采纳,获得20
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
6分钟前
7分钟前
TonyLee完成签到,获得积分10
8分钟前
xt完成签到,获得积分10
8分钟前
8分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
BowieHuang应助科研通管家采纳,获得10
8分钟前
BowieHuang应助科研通管家采纳,获得10
8分钟前
阿尔法贝塔完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
9分钟前
9分钟前
9分钟前
nbing完成签到,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
幽默白秋发布了新的文献求助10
10分钟前
幽默白秋发布了新的文献求助10
10分钟前
幽默白秋发布了新的文献求助10
10分钟前
幽默白秋发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674814
关于积分的说明 14795358
捐赠科研通 4633182
什么是DOI,文献DOI怎么找? 2532808
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723