Design of New Inorganic Crystals with the Desired Composition Using Deep Learning

自编码 Crystal(编程语言) 生成语法 Atom(片上系统) 生成模型 材料科学 晶体结构预测 扩散 计算机科学 作文(语言) 航程(航空) 人工智能 晶体结构 算法 深度学习 统计物理学 生物系统 化学 结晶学 热力学 物理 语言学 哲学 生物 程序设计语言 复合材料 嵌入式系统
作者
Seunghee Han,Jaewan Lee,Sehui Han,Seyed Mohamad Moosavi,Jihan Kim,Chang-Young Park
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (18): 5755-5763 被引量:3
标识
DOI:10.1021/acs.jcim.3c00935
摘要

New solid-state materials have been discovered using various approaches from atom substitution in density functional theory (DFT) to generative models in machine learning. Recently, generative models have shown promising performance in finding new materials. Crystal generation with deep learning has been applied in various methods to discover new crystals. However, most generative models can only be applied to materials with specific elements or generate structures with random compositions. In this work, we developed a model that can generate crystals with desired compositions based on a crystal diffusion variational autoencoder. We generated crystal structures for 14 compositions of three types of materials in different applications. The generated structures were further stabilized using DFT calculations. We found the most stable structures in the existing database for all but one composition, even though eight compositions among them were not in the data set trained in a crystal diffusion variational autoencoder. This substantiates the prospect of the generation of an extensive range of compositions. Finally, 205 unique new crystal materials with energy above hull <100 meV/atom were generated. Moreover, we compared the average formation energy of the crystals generated from five compositions, two of which were hypothetical, with that of traditional methods like atom substitution and a generative model. The generated structures had lower formation energy than those of other models, except for one composition. These results demonstrate that our approach can be applied stably in various fields to design stable inorganic materials based on machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
advance完成签到,获得积分10
1秒前
gattina完成签到,获得积分10
1秒前
妙奇完成签到,获得积分10
2秒前
2秒前
入戏太深完成签到,获得积分10
2秒前
略略略完成签到,获得积分10
2秒前
妖风发布了新的文献求助30
2秒前
祁依欧欧完成签到,获得积分10
3秒前
莴苣发布了新的文献求助10
4秒前
DZQ完成签到,获得积分10
5秒前
Jasper应助结实星星采纳,获得10
6秒前
wanghao完成签到 ,获得积分10
6秒前
Eric完成签到,获得积分10
7秒前
kkkkk发布了新的文献求助10
8秒前
请叫我风吹麦浪应助xiiin采纳,获得10
8秒前
打打应助modesty采纳,获得10
9秒前
26完成签到,获得积分10
12秒前
英勇凝旋完成签到,获得积分10
13秒前
zjt18应助兴奋采梦采纳,获得10
13秒前
16秒前
IV完成签到,获得积分10
16秒前
17秒前
小菡菡完成签到,获得积分10
17秒前
柯一一应助蓝天白云采纳,获得10
17秒前
Akim应助蓝天白云采纳,获得10
17秒前
打打应助book卟采纳,获得10
19秒前
昕wei完成签到 ,获得积分10
21秒前
hyc发布了新的文献求助10
22秒前
modesty发布了新的文献求助10
22秒前
巧克力手印完成签到,获得积分10
23秒前
yznfly应助LELE采纳,获得50
24秒前
赘婿应助结实星星采纳,获得10
24秒前
lyx2010完成签到,获得积分10
25秒前
katrina完成签到,获得积分10
26秒前
26秒前
xiiin完成签到,获得积分10
28秒前
SYLH应助modesty采纳,获得10
29秒前
斯文败类应助妖风采纳,获得30
30秒前
酷炫抽屉完成签到 ,获得积分10
33秒前
前行的灿完成签到 ,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965870
求助须知:如何正确求助?哪些是违规求助? 3511230
关于积分的说明 11156929
捐赠科研通 3245841
什么是DOI,文献DOI怎么找? 1793144
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278