Design of New Inorganic Crystals with the Desired Composition Using Deep Learning

自编码 Crystal(编程语言) 生成语法 Atom(片上系统) 生成模型 材料科学 晶体结构预测 扩散 计算机科学 作文(语言) 航程(航空) 人工智能 晶体结构 算法 深度学习 统计物理学 生物系统 化学 结晶学 热力学 物理 语言学 哲学 生物 程序设计语言 复合材料 嵌入式系统
作者
Seunghee Han,Jaewan Lee,Sehui Han,Seyed Mohamad Moosavi,Jihan Kim,Chang-Young Park
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (18): 5755-5763 被引量:3
标识
DOI:10.1021/acs.jcim.3c00935
摘要

New solid-state materials have been discovered using various approaches from atom substitution in density functional theory (DFT) to generative models in machine learning. Recently, generative models have shown promising performance in finding new materials. Crystal generation with deep learning has been applied in various methods to discover new crystals. However, most generative models can only be applied to materials with specific elements or generate structures with random compositions. In this work, we developed a model that can generate crystals with desired compositions based on a crystal diffusion variational autoencoder. We generated crystal structures for 14 compositions of three types of materials in different applications. The generated structures were further stabilized using DFT calculations. We found the most stable structures in the existing database for all but one composition, even though eight compositions among them were not in the data set trained in a crystal diffusion variational autoencoder. This substantiates the prospect of the generation of an extensive range of compositions. Finally, 205 unique new crystal materials with energy above hull <100 meV/atom were generated. Moreover, we compared the average formation energy of the crystals generated from five compositions, two of which were hypothetical, with that of traditional methods like atom substitution and a generative model. The generated structures had lower formation energy than those of other models, except for one composition. These results demonstrate that our approach can be applied stably in various fields to design stable inorganic materials based on machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
int0030完成签到,获得积分10
3秒前
英姑应助黙宇循光采纳,获得10
3秒前
Lingkoi发布了新的文献求助10
3秒前
英姑应助王三采纳,获得10
4秒前
5秒前
打打应助整齐的远侵采纳,获得30
6秒前
聪慧的石头完成签到,获得积分10
8秒前
9秒前
9秒前
123123发布了新的文献求助10
9秒前
吴巷玉完成签到,获得积分10
11秒前
秀xiu完成签到,获得积分10
11秒前
万能图书馆应助Lingkoi采纳,获得10
11秒前
QiangWang1991完成签到,获得积分10
12秒前
酷波er应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得80
13秒前
领导范儿应助科研通管家采纳,获得10
14秒前
言余应助生生采纳,获得20
14秒前
14秒前
黙宇循光发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
YK完成签到,获得积分10
14秒前
希望天下0贩的0应助天易采纳,获得10
15秒前
linxi发布了新的文献求助10
16秒前
汉堡包应助ppyunyi采纳,获得10
17秒前
起点完成签到,获得积分10
18秒前
大美女发布了新的文献求助10
19秒前
20秒前
微笑的白羊关注了科研通微信公众号
20秒前
wrb发布了新的文献求助10
20秒前
田様应助成就的夏之采纳,获得10
21秒前
打打应助包李采纳,获得10
22秒前
jolin发布了新的文献求助10
23秒前
23秒前
woo完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143795
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814544
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419