谐波
人工神经网络
物理
统计物理学
领域(数学)
匹配(统计)
激光器
计算物理学
光学
量子力学
计算机科学
人工智能
数学
统计
电压
纯数学
作者
Bincheng Wang,Tianyu Wen,Yong Fu,Baochang Li,Kan Wang,Cheng Jin
出处
期刊:Physical review
日期:2023-11-17
卷期号:108 (5)
标识
DOI:10.1103/physreva.108.053510
摘要
We investigate the generation of near-threshold harmonics (NTHs) based on solving the three-dimensional time-dependent Schr\"odinger equation and utilizing an artificial neural network as a surrogate model to study the macroscopic propagation. Through our research, we identify two distinct pathways for NTH generation: harmoniclike transition and resonant transition. These pathways exhibit varying laser-parameter dependencies and phase-matching conditions, making it possible to spatially separate and selectively enhance NTHs by manipulating laser parameters in experimental setups. Our study provides insights into the underlying physics of the NTH macroscopic propagation and presents a methodology that can be applied to computationally intensive problems in the field of strong-field physics.
科研通智能强力驱动
Strongly Powered by AbleSci AI