How is the acceptance of new energy vehicles under the recurring COVID-19 — A case study in China

补贴 结构方程建模 中国 业务 激励 晋升(国际象棋) 情感(语言学) 营销 风险感知 公共经济学 环境经济学 经济 心理学 政治学 计算机科学 微观经济学 感知 沟通 机器学习 神经科学 政治 法学 市场经济
作者
Yahong Jiang,WU Qun-qi,Bo Chen,Xi Liu,Yongchao Song,Jingwen Yang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:430: 139751-139751
标识
DOI:10.1016/j.jclepro.2023.139751
摘要

COVID-19 threatens human life and health, and affects travel frequency and travel mode choice. Clarifying the main drivers of the purchase intention of new energy vehicles (NEVs) under the epidemic is important for formulating phasing policy regarding the promotion of green mobility and the construction of smart cities. Based on this, this study introduces variables such as perceived risk and trust under the epidemic, aiming to investigate the main drivers of the purchase intention of NEVs in China under epidemic through an extended technology acceptance model. The data covered the public in urban, suburban, and rural areas of China (n=884) and were analyzed using structural equation model. Specifically, trust had a significant positive effect after the epidemic. Perceived risk did not directly affect the public’s intention to purchase new energy vehicles, but had an indirect effect through attitude and perceived utility, attitude and trust, and social interaction and trust. In addition, the significant positive impacts of subsidy and non-subsidy incentive are further validated, which reinforces the current view. Considering the limited literature related to the purchase intention of NEVs under the epidemic in developing countries, it is hoped that these findings will provide new perspectives for future research, and provide guidance for phasing policy formulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunny心晴完成签到 ,获得积分10
刚刚
1秒前
20zqlin发布了新的文献求助10
1秒前
1秒前
1秒前
吴书玙珩发布了新的文献求助10
1秒前
斯文败类应助陌上采纳,获得10
2秒前
科研通AI6应助学术蔡鸡采纳,获得10
2秒前
111完成签到,获得积分10
3秒前
黑暗与黎明完成签到 ,获得积分10
5秒前
柏林寒冬应助小盆采纳,获得10
6秒前
乐乐应助WorkahoLic采纳,获得10
6秒前
柏林寒冬应助小盆采纳,获得10
6秒前
CodeCraft应助生动的沧海采纳,获得10
6秒前
Ming完成签到,获得积分10
6秒前
无情修杰完成签到 ,获得积分10
7秒前
光亮的太阳完成签到,获得积分10
7秒前
大模型应助寻星子采纳,获得10
7秒前
Lucas应助吴书玙珩采纳,获得10
8秒前
称心的绿竹完成签到,获得积分10
9秒前
开放的太君完成签到 ,获得积分10
11秒前
klicking完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
淡定雁开完成签到,获得积分10
13秒前
14秒前
jimskylxk发布了新的文献求助10
14秒前
木木完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
18秒前
雨琴完成签到,获得积分10
18秒前
WorkahoLic完成签到,获得积分10
18秒前
lixx发布了新的文献求助10
19秒前
Akim应助磨磨采纳,获得10
19秒前
Sun发布了新的文献求助30
19秒前
21秒前
23秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379826
求助须知:如何正确求助?哪些是违规求助? 4504037
关于积分的说明 14017191
捐赠科研通 4412828
什么是DOI,文献DOI怎么找? 2423948
邀请新用户注册赠送积分活动 1416842
关于科研通互助平台的介绍 1394454