亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lean and interpretable digital twins for building energy monitoring – A case study with smart thermostatic radiator valves and gas absorption heat pumps

散热器(发动机冷却) 能源性能 高效能源利用 恒温器 能量(信号处理) 工程类 计算机科学 模拟 建筑工程 系统工程 工业工程 机械工程 汽车工程 电气工程 数学 统计
作者
Massimiliano Manfren,P.A.B. James,Victoria Aragon,Lamberto Tronchin
出处
期刊:Energy and AI [Elsevier]
卷期号:14: 100304-100304 被引量:14
标识
DOI:10.1016/j.egyai.2023.100304
摘要

The transition to low carbon energy systems poses challenges in terms of energy efficiency. In building refurbishment projects, efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings, together with other benefits. Measured building performance, however, often reveals a significant gap between the predicted energy use (design stage) and actual energy use (operation stage). For this reason, lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement. In this research, interpretable regression models are built with data at multiple temporal resolutions (monthly, daily and hourly) and seamlessly integrated with the goal of verifying the performance improvements due to Smart Thermostatic Radiator Valves (TRVs) and Gas Absorption Heat Pumps (GAHPs) as well as giving insights on the performance of the building as a whole. Further, as part of modelling research, Time Of Week and Temperature (TOWT) approach is reformulated and benchmarked against its original implementation. The case study chosen is Hale Court sheltered housing, located in the city of Portsmouth (UK). This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS. The results obtained are used to illustrate possible extensions of the use of energy signature modelling, highlighting implications for energy management and innovative building technologies development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助小飞采纳,获得10
2秒前
激昂的吐司完成签到,获得积分10
2秒前
5秒前
李爱国应助激昂的吐司采纳,获得10
6秒前
qianyixingchen完成签到 ,获得积分10
8秒前
李健应助huhu采纳,获得10
10秒前
wanci应助mogekkko采纳,获得10
10秒前
平平无奇打工人完成签到 ,获得积分10
17秒前
丘比特应助小飞采纳,获得10
18秒前
DAOXIAN发布了新的文献求助10
21秒前
23秒前
皮皮完成签到 ,获得积分10
27秒前
28秒前
mogekkko发布了新的文献求助10
28秒前
拉长的迎曼完成签到 ,获得积分10
31秒前
32秒前
乐乐应助小飞采纳,获得10
32秒前
32秒前
37秒前
sunny完成签到 ,获得积分10
41秒前
zjh完成签到 ,获得积分10
42秒前
赘婿应助mogekkko采纳,获得10
43秒前
zbb123完成签到 ,获得积分10
44秒前
AamirAli完成签到,获得积分10
46秒前
汉堡包应助小飞采纳,获得10
46秒前
拿铁小笼包完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
54秒前
DAOXIAN完成签到,获得积分10
55秒前
59秒前
cqhecq完成签到,获得积分10
59秒前
taku完成签到 ,获得积分10
1分钟前
香蕉觅云应助hyodong采纳,获得10
1分钟前
打打应助赵振辉采纳,获得10
1分钟前
1分钟前
1分钟前
情怀应助有魅力的仙人掌采纳,获得10
1分钟前
斯文败类应助小飞采纳,获得10
1分钟前
mogekkko发布了新的文献求助10
1分钟前
1分钟前
npknpk发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332