Taste Bud-Inspired Single-Drop Multitaste Sensing for Comprehensive Flavor Analysis with Deep Learning Algorithms

舌头 甜蜜 品味 电子舌 人工智能 计算机科学 分类器(UML) 深度学习 感知 机器学习 算法 食品科学 生物 医学 神经科学 病理
作者
Han Hee Jung,Junwoo Yea,Hyun‐Jong Lee,Han Na Jung,Janghwan Jekal,Hyeokjun Lee,Jeongdae Ha,Saehyuck Oh,Soojeong Song,Jieun Son,Tae Sang Yu,S.I. Jung,Chanhee Lee,Jeongho Kwak,Jihwan P. Choi,Kyung‐In Jang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (39): 46041-46053 被引量:11
标识
DOI:10.1021/acsami.3c09684
摘要

The electronic tongue (E-tongue) system has emerged as a significant innovation, aiming to replicate the complexity of human taste perception. In spite of the advancements in E-tongue technologies, two primary challenges remain to be addressed. First, evaluating the actual taste is complex due to interactions between taste and substances, such as synergistic and suppressive effects. Second, ensuring reliable outcomes in dynamic conditions, particularly when faced with high deviation error data, presents a significant challenge. The present study introduces a bioinspired artificial E-tongue system that mimics the gustatory system by integrating multiple arrays of taste sensors to emulate taste buds in the human tongue and incorporating a customized deep-learning algorithm for taste interpretation. The developed E-tongue system is capable of detecting four distinct tastes in a single drop of dietary compounds, such as saltiness, sourness, astringency, and sweetness, demonstrating notable reversibility and selectivity. The taste profiles of six different wines are obtained by the E-tongue system and demonstrated similarities in taste trends between the E-tongue system and user reviews from online, although some disparities still exist. To mitigate these disparities, a prototype-based classifier with soft voting is devised and implemented for the artificial E-tongue system. The artificial E-tongue system achieved a high classification accuracy of ∼95% in distinguishing among six different wines and ∼90% accuracy even in an environment where more than 1/3 of the data contained errors. Moreover, by harnessing the capabilities of deep learning technology, a recommendation system was demonstrated to enhance the user experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨wx发布了新的文献求助10
刚刚
迪er完成签到,获得积分10
1秒前
将离发布了新的文献求助10
1秒前
爆米花应助爵士黄瓜采纳,获得10
1秒前
Ava应助kkkk采纳,获得10
1秒前
剩下的盛夏完成签到,获得积分10
1秒前
老孔发布了新的文献求助10
2秒前
安静的幻儿完成签到,获得积分10
3秒前
在水一方应助善良香岚采纳,获得10
3秒前
3秒前
4秒前
一只小学弱完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
xxcc12356完成签到,获得积分10
8秒前
冷傲的曼柔完成签到 ,获得积分10
8秒前
9秒前
10秒前
樊焕焕发布了新的文献求助20
12秒前
12秒前
13秒前
13秒前
林霄发布了新的文献求助10
13秒前
bkagyin应助L同学采纳,获得10
14秒前
vicky发布了新的文献求助10
14秒前
14秒前
丰富老鼠完成签到,获得积分10
15秒前
15秒前
xuleiman发布了新的文献求助10
17秒前
18秒前
18秒前
mmyyff发布了新的文献求助10
18秒前
lll发布了新的文献求助10
19秒前
19秒前
xxcc12356发布了新的文献求助100
19秒前
轻松的天真完成签到,获得积分10
19秒前
可爱的函函应助梓榆采纳,获得10
20秒前
shuaiqidewang完成签到 ,获得积分10
21秒前
21秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384679
求助须知:如何正确求助?哪些是违规求助? 4507461
关于积分的说明 14028131
捐赠科研通 4417171
什么是DOI,文献DOI怎么找? 2426330
邀请新用户注册赠送积分活动 1419077
关于科研通互助平台的介绍 1397405