清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Taste Bud-Inspired Single-Drop Multitaste Sensing for Comprehensive Flavor Analysis with Deep Learning Algorithms

舌头 甜蜜 品味 电子舌 人工智能 计算机科学 分类器(UML) 深度学习 感知 机器学习 算法 食品科学 生物 医学 神经科学 病理
作者
Han Hee Jung,Junwoo Yea,Hyun‐Jong Lee,Han Na Jung,Janghwan Jekal,Hyeokjun Lee,Jeongdae Ha,Saehyuck Oh,Soojeong Song,Jieun Son,Tae Sang Yu,S.I. Jung,Chanhee Lee,Jeongho Kwak,Jihwan P. Choi,Kyung‐In Jang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (39): 46041-46053 被引量:11
标识
DOI:10.1021/acsami.3c09684
摘要

The electronic tongue (E-tongue) system has emerged as a significant innovation, aiming to replicate the complexity of human taste perception. In spite of the advancements in E-tongue technologies, two primary challenges remain to be addressed. First, evaluating the actual taste is complex due to interactions between taste and substances, such as synergistic and suppressive effects. Second, ensuring reliable outcomes in dynamic conditions, particularly when faced with high deviation error data, presents a significant challenge. The present study introduces a bioinspired artificial E-tongue system that mimics the gustatory system by integrating multiple arrays of taste sensors to emulate taste buds in the human tongue and incorporating a customized deep-learning algorithm for taste interpretation. The developed E-tongue system is capable of detecting four distinct tastes in a single drop of dietary compounds, such as saltiness, sourness, astringency, and sweetness, demonstrating notable reversibility and selectivity. The taste profiles of six different wines are obtained by the E-tongue system and demonstrated similarities in taste trends between the E-tongue system and user reviews from online, although some disparities still exist. To mitigate these disparities, a prototype-based classifier with soft voting is devised and implemented for the artificial E-tongue system. The artificial E-tongue system achieved a high classification accuracy of ∼95% in distinguishing among six different wines and ∼90% accuracy even in an environment where more than 1/3 of the data contained errors. Moreover, by harnessing the capabilities of deep learning technology, a recommendation system was demonstrated to enhance the user experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xue完成签到 ,获得积分10
23秒前
V_I_G完成签到 ,获得积分0
28秒前
34秒前
35秒前
沙海沉戈完成签到,获得积分0
40秒前
科研通AI6应助石愚志采纳,获得10
57秒前
Lexi完成签到,获得积分10
1分钟前
Ava应助Lexi采纳,获得10
1分钟前
Sunny完成签到,获得积分10
1分钟前
1分钟前
2分钟前
Lexi发布了新的文献求助10
2分钟前
lyj完成签到 ,获得积分0
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
种下梧桐树完成签到 ,获得积分10
3分钟前
Rn完成签到 ,获得积分0
3分钟前
量子星尘发布了新的文献求助10
3分钟前
诚心的苡发布了新的文献求助10
3分钟前
weihe完成签到,获得积分10
3分钟前
华仔应助阿米尔盼盼采纳,获得100
3分钟前
3分钟前
3分钟前
阿米尔盼盼发布了新的文献求助100
3分钟前
luobote完成签到 ,获得积分10
4分钟前
4分钟前
jixia发布了新的文献求助30
4分钟前
4分钟前
鲤鱼山人完成签到 ,获得积分10
4分钟前
凤迎雪飘完成签到,获得积分10
4分钟前
葵花籽发布了新的文献求助10
4分钟前
KON完成签到,获得积分10
4分钟前
andrewyu完成签到,获得积分10
4分钟前
zhouyq发布了新的文献求助10
4分钟前
woxinyouyou完成签到,获得积分0
4分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
lorentzh完成签到,获得积分10
5分钟前
5分钟前
psj完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555016
求助须知:如何正确求助?哪些是违规求助? 4639572
关于积分的说明 14656378
捐赠科研通 4581527
什么是DOI,文献DOI怎么找? 2512837
邀请新用户注册赠送积分活动 1487530
关于科研通互助平台的介绍 1458538