Taste Bud-Inspired Single-Drop Multitaste Sensing for Comprehensive Flavor Analysis with Deep Learning Algorithms

舌头 甜蜜 品味 电子舌 人工智能 计算机科学 分类器(UML) 深度学习 感知 机器学习 算法 食品科学 生物 医学 神经科学 病理
作者
Han Hee Jung,Junwoo Yea,Hyun‐Jong Lee,Han Na Jung,Janghwan Jekal,Hyeokjun Lee,Jeongdae Ha,Saehyuck Oh,Soojeong Song,Jieun Son,Tae Sang Yu,S.I. Jung,Chanhee Lee,Jeongho Kwak,Jihwan P. Choi,Kyung‐In Jang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (39): 46041-46053 被引量:8
标识
DOI:10.1021/acsami.3c09684
摘要

The electronic tongue (E-tongue) system has emerged as a significant innovation, aiming to replicate the complexity of human taste perception. In spite of the advancements in E-tongue technologies, two primary challenges remain to be addressed. First, evaluating the actual taste is complex due to interactions between taste and substances, such as synergistic and suppressive effects. Second, ensuring reliable outcomes in dynamic conditions, particularly when faced with high deviation error data, presents a significant challenge. The present study introduces a bioinspired artificial E-tongue system that mimics the gustatory system by integrating multiple arrays of taste sensors to emulate taste buds in the human tongue and incorporating a customized deep-learning algorithm for taste interpretation. The developed E-tongue system is capable of detecting four distinct tastes in a single drop of dietary compounds, such as saltiness, sourness, astringency, and sweetness, demonstrating notable reversibility and selectivity. The taste profiles of six different wines are obtained by the E-tongue system and demonstrated similarities in taste trends between the E-tongue system and user reviews from online, although some disparities still exist. To mitigate these disparities, a prototype-based classifier with soft voting is devised and implemented for the artificial E-tongue system. The artificial E-tongue system achieved a high classification accuracy of ∼95% in distinguishing among six different wines and ∼90% accuracy even in an environment where more than 1/3 of the data contained errors. Moreover, by harnessing the capabilities of deep learning technology, a recommendation system was demonstrated to enhance the user experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研力力发布了新的文献求助10
1秒前
嘻嘻完成签到,获得积分10
1秒前
2秒前
EBA发布了新的文献求助10
2秒前
JUST发布了新的文献求助10
2秒前
可靠巧荷发布了新的文献求助10
2秒前
wind完成签到,获得积分10
4秒前
5秒前
圈圈叉叉发布了新的文献求助10
6秒前
7秒前
26发布了新的文献求助10
7秒前
guoza完成签到 ,获得积分10
8秒前
do发布了新的文献求助10
8秒前
8秒前
9秒前
vivian关注了科研通微信公众号
9秒前
10秒前
10秒前
小李博士发布了新的文献求助10
10秒前
baibai完成签到,获得积分10
11秒前
asdfqwer应助禾之采纳,获得10
11秒前
曹顺道完成签到,获得积分10
12秒前
曾经小伙完成签到 ,获得积分10
12秒前
寒冷毛衣发布了新的文献求助10
13秒前
ABJ完成签到 ,获得积分10
13秒前
ZWK发布了新的文献求助10
13秒前
do完成签到,获得积分10
14秒前
czb发布了新的文献求助10
14秒前
14秒前
坚强雅绿发布了新的文献求助10
15秒前
天天快乐应助语嘘嘘采纳,获得10
16秒前
念姬发布了新的文献求助10
16秒前
17秒前
26完成签到,获得积分10
18秒前
舒适的映易完成签到,获得积分10
19秒前
何照人应助俭朴的不可采纳,获得10
19秒前
perdgs完成签到,获得积分10
20秒前
22秒前
Akim应助欢喜的跳跳糖采纳,获得10
22秒前
大模型应助小李博士采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962851
求助须知:如何正确求助?哪些是违规求助? 3508777
关于积分的说明 11143063
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791638
邀请新用户注册赠送积分活动 873002
科研通“疑难数据库(出版商)”最低求助积分说明 803577