Taste Bud-Inspired Single-Drop Multitaste Sensing for Comprehensive Flavor Analysis with Deep Learning Algorithms

舌头 甜蜜 品味 电子舌 人工智能 计算机科学 分类器(UML) 深度学习 感知 机器学习 算法 食品科学 生物 医学 神经科学 病理
作者
Han Hee Jung,Junwoo Yea,Hyun‐Jong Lee,Han Na Jung,Janghwan Jekal,Hyeokjun Lee,Jeongdae Ha,Saehyuck Oh,Soojeong Song,Jieun Son,Tae Sang Yu,S.I. Jung,Chanhee Lee,Jeongho Kwak,Jihwan P. Choi,Kyung‐In Jang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (39): 46041-46053 被引量:6
标识
DOI:10.1021/acsami.3c09684
摘要

The electronic tongue (E-tongue) system has emerged as a significant innovation, aiming to replicate the complexity of human taste perception. In spite of the advancements in E-tongue technologies, two primary challenges remain to be addressed. First, evaluating the actual taste is complex due to interactions between taste and substances, such as synergistic and suppressive effects. Second, ensuring reliable outcomes in dynamic conditions, particularly when faced with high deviation error data, presents a significant challenge. The present study introduces a bioinspired artificial E-tongue system that mimics the gustatory system by integrating multiple arrays of taste sensors to emulate taste buds in the human tongue and incorporating a customized deep-learning algorithm for taste interpretation. The developed E-tongue system is capable of detecting four distinct tastes in a single drop of dietary compounds, such as saltiness, sourness, astringency, and sweetness, demonstrating notable reversibility and selectivity. The taste profiles of six different wines are obtained by the E-tongue system and demonstrated similarities in taste trends between the E-tongue system and user reviews from online, although some disparities still exist. To mitigate these disparities, a prototype-based classifier with soft voting is devised and implemented for the artificial E-tongue system. The artificial E-tongue system achieved a high classification accuracy of ∼95% in distinguishing among six different wines and ∼90% accuracy even in an environment where more than 1/3 of the data contained errors. Moreover, by harnessing the capabilities of deep learning technology, a recommendation system was demonstrated to enhance the user experience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助张欣宇采纳,获得10
刚刚
sxm完成签到,获得积分10
刚刚
1秒前
敏子发布了新的文献求助10
1秒前
houyp0326完成签到,获得积分10
1秒前
1秒前
1秒前
小蘑菇应助lily采纳,获得10
2秒前
CodeCraft应助hhg采纳,获得10
2秒前
yayyaya完成签到 ,获得积分10
2秒前
小编一枚完成签到 ,获得积分10
2秒前
啊圆发布了新的文献求助10
3秒前
wzz完成签到,获得积分10
3秒前
3秒前
4秒前
AliceWong发布了新的文献求助10
4秒前
科研小桶完成签到,获得积分10
5秒前
wzz发布了新的文献求助10
6秒前
paltte发布了新的文献求助10
6秒前
斯文败类应助上b班采纳,获得10
7秒前
德德发布了新的文献求助10
7秒前
深情安青应助YuGe采纳,获得10
8秒前
8秒前
月半完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
竹筏过海应助科研通管家采纳,获得30
11秒前
李健应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
Miller应助科研通管家采纳,获得20
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155506
求助须知:如何正确求助?哪些是违规求助? 2806610
关于积分的说明 7870084
捐赠科研通 2464969
什么是DOI,文献DOI怎么找? 1312053
科研通“疑难数据库(出版商)”最低求助积分说明 629847
版权声明 601892