Explainable deep neural network for in-plain defect detection during additive manufacturing

人工智能 人工神经网络 计算机科学 模式识别(心理学) 相似性(几何) 深度学习 过程(计算) 感知器 集合(抽象数据类型) 图层(电子) 灰度 图像(数学) 材料科学 操作系统 复合材料 程序设计语言
作者
Deepak Kumar,Yongxin Liu,Houbing Song,Sirish Namilae
出处
期刊:Rapid Prototyping Journal [Emerald Publishing Limited]
卷期号:30 (1): 49-59 被引量:9
标识
DOI:10.1108/rpj-05-2023-0157
摘要

Purpose The purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types without being trained on specific defect data sets and can be applied for real-time process control. Design/methodology/approach This study develops an explainable artificial intelligence (AI) framework, a zero-bias deep neural network (DNN) model for real-time defect detection during the AM process. In this method, the last dense layer of the DNN is replaced by two consecutive parts, a regular dense layer denoted (L1) for dimensional reduction, and a similarity matching layer (L2) for equal weight and non-biased cosine similarity matching. Grayscale images of 3D printed samples acquired during printing were used as the input to the zero-bias DNN. Findings This study demonstrates that the approach is capable of successfully detecting multiple types of defects such as cracks, stringing and warping with high accuracy without any prior training on defective data sets, with an accuracy of 99.5%. Practical implications Once the model is set up, the computational time for anomaly detection is lower than the speed of image acquisition indicating the potential for real-time process control. It can also be used to minimize manual processing in AI-enabled AM. Originality/value To the best of the authors’ knowledge, this is the first study to use zero-bias DNN, an explainable AI approach for defect detection in AM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
da_line应助U9A采纳,获得10
刚刚
刚刚
酷波er应助李朝朝采纳,获得10
1秒前
2秒前
jialinzhou完成签到,获得积分10
3秒前
彭于晏完成签到,获得积分10
4秒前
5秒前
6秒前
丘比特应助mm采纳,获得10
7秒前
共享精神应助不要加糖采纳,获得10
7秒前
Autism完成签到,获得积分10
7秒前
7秒前
sunlanglang发布了新的文献求助10
7秒前
乐乐应助心灵美复天采纳,获得10
8秒前
8秒前
8秒前
YamDaamCaa应助xlxl采纳,获得30
10秒前
10秒前
xiaowang发布了新的文献求助10
12秒前
Talha发布了新的文献求助10
13秒前
佘楽发布了新的文献求助10
13秒前
邱邱发布了新的文献求助10
14秒前
14秒前
岁岁平安发布了新的文献求助10
15秒前
雪白的听寒完成签到 ,获得积分10
15秒前
领导范儿应助sunlanglang采纳,获得10
16秒前
彭佳乐发布了新的文献求助10
17秒前
饼藏发布了新的文献求助10
19秒前
Ava应助加油哟采纳,获得10
20秒前
泯工发布了新的文献求助10
21秒前
21秒前
bkagyin应助邱邱采纳,获得10
22秒前
xiaowang完成签到,获得积分10
23秒前
犹豫的寄文完成签到,获得积分20
23秒前
24秒前
Liufgui应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
李健应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578