Explainable deep neural network for in-plain defect detection during additive manufacturing

人工智能 人工神经网络 计算机科学 模式识别(心理学) 相似性(几何) 深度学习 过程(计算) 感知器 集合(抽象数据类型) 图层(电子) 灰度 图像(数学) 材料科学 操作系统 复合材料 程序设计语言
作者
Deepak Kumar,Yongxin Liu,Houbing Song,Sirish Namilae
出处
期刊:Rapid Prototyping Journal [Emerald (MCB UP)]
卷期号:30 (1): 49-59 被引量:9
标识
DOI:10.1108/rpj-05-2023-0157
摘要

Purpose The purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types without being trained on specific defect data sets and can be applied for real-time process control. Design/methodology/approach This study develops an explainable artificial intelligence (AI) framework, a zero-bias deep neural network (DNN) model for real-time defect detection during the AM process. In this method, the last dense layer of the DNN is replaced by two consecutive parts, a regular dense layer denoted (L1) for dimensional reduction, and a similarity matching layer (L2) for equal weight and non-biased cosine similarity matching. Grayscale images of 3D printed samples acquired during printing were used as the input to the zero-bias DNN. Findings This study demonstrates that the approach is capable of successfully detecting multiple types of defects such as cracks, stringing and warping with high accuracy without any prior training on defective data sets, with an accuracy of 99.5%. Practical implications Once the model is set up, the computational time for anomaly detection is lower than the speed of image acquisition indicating the potential for real-time process control. It can also be used to minimize manual processing in AI-enabled AM. Originality/value To the best of the authors’ knowledge, this is the first study to use zero-bias DNN, an explainable AI approach for defect detection in AM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茉莉完成签到,获得积分10
刚刚
今今发布了新的文献求助10
1秒前
追寻的筝发布了新的文献求助10
1秒前
请叫我风吹麦浪应助Ll采纳,获得10
1秒前
Keming完成签到,获得积分10
1秒前
害羞聋五发布了新的文献求助10
2秒前
tulip发布了新的文献求助10
2秒前
2秒前
2秒前
嘟嘟发布了新的文献求助10
2秒前
3秒前
苏照杭应助jym采纳,获得10
3秒前
3秒前
3秒前
眼睛大又蓝完成签到,获得积分10
3秒前
kangkang完成签到,获得积分10
3秒前
4秒前
4秒前
绵绵完成签到,获得积分10
4秒前
5秒前
Mlwwq完成签到,获得积分10
5秒前
5秒前
小皮蛋儿完成签到,获得积分10
5秒前
lyn发布了新的文献求助10
5秒前
JUSTs0so完成签到,获得积分10
6秒前
失联者完成签到,获得积分10
6秒前
感性的神级完成签到,获得积分10
6秒前
眯眯眼的谷冬完成签到 ,获得积分10
6秒前
6秒前
花莫凋零发布了新的文献求助10
7秒前
szh123完成签到,获得积分10
7秒前
7秒前
安息香发布了新的文献求助10
7秒前
核桃完成签到,获得积分10
7秒前
丹dan发布了新的文献求助10
7秒前
7秒前
科研通AI5应助大方嵩采纳,获得10
8秒前
8秒前
HYG发布了新的文献求助30
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762