Explainable deep neural network for in-plain defect detection during additive manufacturing

人工智能 人工神经网络 计算机科学 模式识别(心理学) 相似性(几何) 深度学习 过程(计算) 感知器 集合(抽象数据类型) 图层(电子) 灰度 图像(数学) 材料科学 操作系统 复合材料 程序设计语言
作者
Deepak Kumar,Yongxin Liu,Houbing Song,Sirish Namilae
出处
期刊:Rapid Prototyping Journal [Emerald Publishing Limited]
卷期号:30 (1): 49-59 被引量:9
标识
DOI:10.1108/rpj-05-2023-0157
摘要

Purpose The purpose of this study is to develop a deep learning framework for additive manufacturing (AM), that can detect different defect types without being trained on specific defect data sets and can be applied for real-time process control. Design/methodology/approach This study develops an explainable artificial intelligence (AI) framework, a zero-bias deep neural network (DNN) model for real-time defect detection during the AM process. In this method, the last dense layer of the DNN is replaced by two consecutive parts, a regular dense layer denoted (L1) for dimensional reduction, and a similarity matching layer (L2) for equal weight and non-biased cosine similarity matching. Grayscale images of 3D printed samples acquired during printing were used as the input to the zero-bias DNN. Findings This study demonstrates that the approach is capable of successfully detecting multiple types of defects such as cracks, stringing and warping with high accuracy without any prior training on defective data sets, with an accuracy of 99.5%. Practical implications Once the model is set up, the computational time for anomaly detection is lower than the speed of image acquisition indicating the potential for real-time process control. It can also be used to minimize manual processing in AI-enabled AM. Originality/value To the best of the authors’ knowledge, this is the first study to use zero-bias DNN, an explainable AI approach for defect detection in AM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助伽娜采纳,获得10
1秒前
彭于晏应助LIUS采纳,获得10
1秒前
传奇3应助xiayiyi采纳,获得10
1秒前
喜悦的无心完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
平常的仙人掌完成签到,获得积分10
2秒前
西林发布了新的文献求助10
3秒前
申左一发布了新的文献求助10
3秒前
阅读发布了新的文献求助10
3秒前
4秒前
4秒前
昵称应助ChengxinXie采纳,获得20
4秒前
5秒前
万能图书馆应助才地理采纳,获得10
5秒前
6秒前
6秒前
壮壮女士发布了新的文献求助10
6秒前
LIUS完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
梅花完成签到,获得积分10
9秒前
9秒前
十一号发布了新的文献求助10
9秒前
祝你发财完成签到,获得积分20
9秒前
万事顺意发布了新的文献求助10
10秒前
11秒前
少少发布了新的文献求助10
11秒前
文艺路人发布了新的文献求助10
11秒前
酷波er应助kkk采纳,获得10
11秒前
幽梦挽歌发布了新的文献求助10
12秒前
单身的淇发布了新的文献求助10
12秒前
sunnyfriend完成签到,获得积分10
12秒前
伽娜发布了新的文献求助10
13秒前
xiayiyi发布了新的文献求助10
13秒前
领导范儿应助Jessica采纳,获得10
13秒前
14秒前
zhangkele完成签到,获得积分10
14秒前
脑洞疼应助zcs采纳,获得30
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559