DeepMatcher: A deep transformer-based network for robust and accurate local feature matching

计算机科学 人工智能 模式识别(心理学) 变压器 特征(语言学) 特征提取 计算机视觉 电压 语言学 哲学 物理 量子力学
作者
Tao Xie,Kun Dai,Ke Wang,Ruifeng Li,Lina Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121361-121361 被引量:8
标识
DOI:10.1016/j.eswa.2023.121361
摘要

Local feature matching constitutes the cornerstone of multiple computer vision applications (e.g., 3D reconstruction and long-term visual localization), and has been successfully resolved by detector-free methods. To further improve the matching performance, more recent research has focused on designing sophisticated architectures but endures additional computational overhead. In this study, with a different perspective from previous studies, we aim to develop a deep and compact matching network to improve performance while reducing computing cost. The key insight is that a local feature matcher with deep layers can capture more human-intuitive and simpler-to-match features. To this end, we propose DeepMatcher, a deep transformer-based network that tackles the inherent obstacles of not being able to build a deep local feature matcher with current methods. DeepMatcher consists of: (1) a local feature extractor (LFE), (2) a feature-transition module (FTM), (3) a slimming transformer (SlimFormer), (4) a coarse matches module (CMM), and (5) a fine matches module (FMM). The LFE is utilized to generate dense keypoints with enriched features from the images. We then introduce the FTM to ensure a smooth transition of feature scopes from LFE to the subsequent SlimFormer because of their different receptive fields. Subsequently, we develop SlimFormer dedicated to DeepMatcher, which leverages vector-based attention to model the relevance among all keypoints, enabling the network to construct a deep Transformer architecture with less computational cost. Relative position encoding is applied to each SlimFormer to explicitly disclose the relative distance information, thereby improving the representation of the keypoints. A layer-scale strategy is also employed in each SlimFormer to enable the network to adaptively assimilate message exchange, thus endowing it to simulate human behavior, in which humans can acquire different matching cues each time they scan an image pair. By interleaving the self- and cross-SlimFormers multiple times, DeepMatcher can easily establish pixel-wise dense matches at the coarse level using the CMM. Finally, we consider match refinement as a combination of classification and regression problems and design an FMM to predict confidence and offset concurrently, thus generating robust and accurate matches. Compared with our baseline LoFTR in indoor/outdoor pose estimation, DeepMatcher surpasses it by 3.32%/2.91% in AUC@5∘. Besides, DeepMatcher and DeepMatcher-L significantly reduce computational cost and only consume 77.89% and 92.46% GFLOPs of LoFTR. Large DeepMatcher considerably outperforms state-of-the-art methods on several benchmarks, including outdoor pose estimation (MegaDepth dataset), indoor pose estimation (ScanNet dataset), homography estimation (HPatches dataset), and image matching (HPatches dataset), demonstrating the superior matching capability of a deep local feature matcher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
leeshho完成签到,获得积分10
3秒前
4秒前
4秒前
灵巧代柔完成签到,获得积分10
5秒前
欢呼妙彤完成签到,获得积分10
5秒前
土豆完成签到 ,获得积分10
6秒前
魔音甜菜完成签到,获得积分10
6秒前
尊敬冰巧完成签到 ,获得积分10
6秒前
6秒前
7秒前
Jasper应助明天见采纳,获得10
7秒前
8秒前
俊逸沛菡发布了新的文献求助10
9秒前
9秒前
zwww完成签到,获得积分10
12秒前
13秒前
qcy72完成签到,获得积分10
14秒前
高兴曼寒发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
善学以致用应助YingXiong采纳,获得30
17秒前
19秒前
Cathy发布了新的文献求助10
19秒前
碇真嗣发布了新的文献求助10
20秒前
20秒前
缥缈的机器猫完成签到,获得积分10
20秒前
留胡子的丹彤完成签到,获得积分10
21秒前
天天快乐应助稳重的秋天采纳,获得10
22秒前
小徐医生完成签到,获得积分10
22秒前
77发布了新的文献求助10
23秒前
like完成签到,获得积分10
24秒前
wangke完成签到,获得积分10
24秒前
英姑应助www采纳,获得10
24秒前
nafy完成签到,获得积分10
25秒前
ZC完成签到,获得积分10
25秒前
ll应助缥缈的机器猫采纳,获得10
25秒前
小徐医生发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429