DeepMatcher: A deep transformer-based network for robust and accurate local feature matching

计算机科学 人工智能 模式识别(心理学) 变压器 特征(语言学) 特征提取 计算机视觉 电压 语言学 哲学 物理 量子力学
作者
Tao Xie,Kun Dai,Ke Wang,Ruifeng Li,Lina Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121361-121361 被引量:8
标识
DOI:10.1016/j.eswa.2023.121361
摘要

Local feature matching constitutes the cornerstone of multiple computer vision applications (e.g., 3D reconstruction and long-term visual localization), and has been successfully resolved by detector-free methods. To further improve the matching performance, more recent research has focused on designing sophisticated architectures but endures additional computational overhead. In this study, with a different perspective from previous studies, we aim to develop a deep and compact matching network to improve performance while reducing computing cost. The key insight is that a local feature matcher with deep layers can capture more human-intuitive and simpler-to-match features. To this end, we propose DeepMatcher, a deep transformer-based network that tackles the inherent obstacles of not being able to build a deep local feature matcher with current methods. DeepMatcher consists of: (1) a local feature extractor (LFE), (2) a feature-transition module (FTM), (3) a slimming transformer (SlimFormer), (4) a coarse matches module (CMM), and (5) a fine matches module (FMM). The LFE is utilized to generate dense keypoints with enriched features from the images. We then introduce the FTM to ensure a smooth transition of feature scopes from LFE to the subsequent SlimFormer because of their different receptive fields. Subsequently, we develop SlimFormer dedicated to DeepMatcher, which leverages vector-based attention to model the relevance among all keypoints, enabling the network to construct a deep Transformer architecture with less computational cost. Relative position encoding is applied to each SlimFormer to explicitly disclose the relative distance information, thereby improving the representation of the keypoints. A layer-scale strategy is also employed in each SlimFormer to enable the network to adaptively assimilate message exchange, thus endowing it to simulate human behavior, in which humans can acquire different matching cues each time they scan an image pair. By interleaving the self- and cross-SlimFormers multiple times, DeepMatcher can easily establish pixel-wise dense matches at the coarse level using the CMM. Finally, we consider match refinement as a combination of classification and regression problems and design an FMM to predict confidence and offset concurrently, thus generating robust and accurate matches. Compared with our baseline LoFTR in indoor/outdoor pose estimation, DeepMatcher surpasses it by 3.32%/2.91% in AUC@5∘. Besides, DeepMatcher and DeepMatcher-L significantly reduce computational cost and only consume 77.89% and 92.46% GFLOPs of LoFTR. Large DeepMatcher considerably outperforms state-of-the-art methods on several benchmarks, including outdoor pose estimation (MegaDepth dataset), indoor pose estimation (ScanNet dataset), homography estimation (HPatches dataset), and image matching (HPatches dataset), demonstrating the superior matching capability of a deep local feature matcher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
专注的雪完成签到 ,获得积分10
3秒前
3秒前
3秒前
Smar_zcl应助科研通管家采纳,获得20
3秒前
Smar_zcl应助科研通管家采纳,获得20
3秒前
所所应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
大吧唧应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
okay完成签到,获得积分10
6秒前
6秒前
ZDP完成签到,获得积分20
6秒前
严yee完成签到,获得积分10
8秒前
无极微光应助limi采纳,获得20
8秒前
量子星尘发布了新的文献求助10
9秒前
浮游应助hkh采纳,获得10
9秒前
希望天下0贩的0应助hkh采纳,获得10
9秒前
Owen应助hkh采纳,获得10
9秒前
犹豫的初丹完成签到,获得积分10
9秒前
李健应助糍粑采纳,获得10
9秒前
冷静初彤完成签到,获得积分10
10秒前
Owen应助轩儿轩采纳,获得10
10秒前
叫滚滚发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304