清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeepMatcher: A deep transformer-based network for robust and accurate local feature matching

计算机科学 人工智能 模式识别(心理学) 变压器 特征(语言学) 特征提取 计算机视觉 电压 语言学 哲学 物理 量子力学
作者
Tao Xie,Kun Dai,Ke Wang,Ruifeng Li,Lina Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121361-121361 被引量:8
标识
DOI:10.1016/j.eswa.2023.121361
摘要

Local feature matching constitutes the cornerstone of multiple computer vision applications (e.g., 3D reconstruction and long-term visual localization), and has been successfully resolved by detector-free methods. To further improve the matching performance, more recent research has focused on designing sophisticated architectures but endures additional computational overhead. In this study, with a different perspective from previous studies, we aim to develop a deep and compact matching network to improve performance while reducing computing cost. The key insight is that a local feature matcher with deep layers can capture more human-intuitive and simpler-to-match features. To this end, we propose DeepMatcher, a deep transformer-based network that tackles the inherent obstacles of not being able to build a deep local feature matcher with current methods. DeepMatcher consists of: (1) a local feature extractor (LFE), (2) a feature-transition module (FTM), (3) a slimming transformer (SlimFormer), (4) a coarse matches module (CMM), and (5) a fine matches module (FMM). The LFE is utilized to generate dense keypoints with enriched features from the images. We then introduce the FTM to ensure a smooth transition of feature scopes from LFE to the subsequent SlimFormer because of their different receptive fields. Subsequently, we develop SlimFormer dedicated to DeepMatcher, which leverages vector-based attention to model the relevance among all keypoints, enabling the network to construct a deep Transformer architecture with less computational cost. Relative position encoding is applied to each SlimFormer to explicitly disclose the relative distance information, thereby improving the representation of the keypoints. A layer-scale strategy is also employed in each SlimFormer to enable the network to adaptively assimilate message exchange, thus endowing it to simulate human behavior, in which humans can acquire different matching cues each time they scan an image pair. By interleaving the self- and cross-SlimFormers multiple times, DeepMatcher can easily establish pixel-wise dense matches at the coarse level using the CMM. Finally, we consider match refinement as a combination of classification and regression problems and design an FMM to predict confidence and offset concurrently, thus generating robust and accurate matches. Compared with our baseline LoFTR in indoor/outdoor pose estimation, DeepMatcher surpasses it by 3.32%/2.91% in AUC@5∘. Besides, DeepMatcher and DeepMatcher-L significantly reduce computational cost and only consume 77.89% and 92.46% GFLOPs of LoFTR. Large DeepMatcher considerably outperforms state-of-the-art methods on several benchmarks, including outdoor pose estimation (MegaDepth dataset), indoor pose estimation (ScanNet dataset), homography estimation (HPatches dataset), and image matching (HPatches dataset), demonstrating the superior matching capability of a deep local feature matcher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小不完成签到 ,获得积分10
8秒前
Luna爱科研完成签到 ,获得积分10
15秒前
jsinm-thyroid完成签到 ,获得积分10
18秒前
jeronimo完成签到,获得积分10
28秒前
在水一方应助邓历鑫采纳,获得10
33秒前
邓历鑫完成签到,获得积分10
43秒前
43秒前
Thunnus001完成签到 ,获得积分10
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
Wei完成签到,获得积分10
1分钟前
ZL完成签到,获得积分10
1分钟前
Nancy完成签到 ,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
虚幻念寒完成签到 ,获得积分10
2分钟前
李木禾完成签到 ,获得积分10
2分钟前
结实新波完成签到,获得积分10
2分钟前
轻舟子发布了新的文献求助10
2分钟前
2分钟前
gqw3505完成签到,获得积分10
2分钟前
2分钟前
RaynorHank发布了新的文献求助10
2分钟前
RaynorHank完成签到,获得积分10
2分钟前
心灵美天奇完成签到 ,获得积分10
2分钟前
朴素的不乐完成签到 ,获得积分10
2分钟前
3分钟前
gsji完成签到 ,获得积分10
3分钟前
小汪汪完成签到 ,获得积分10
3分钟前
甫寸完成签到 ,获得积分10
3分钟前
LPPQBB应助科研通管家采纳,获得50
3分钟前
maggiexjl完成签到,获得积分10
4分钟前
4分钟前
hyzzz完成签到 ,获得积分10
4分钟前
4分钟前
智者雨人完成签到 ,获得积分10
4分钟前
小鱼女侠完成签到 ,获得积分10
4分钟前
黄淮科研小白龙完成签到 ,获得积分10
4分钟前
4分钟前
crystaler完成签到 ,获得积分10
4分钟前
雪山飞龙完成签到,获得积分10
5分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347134
求助须知:如何正确求助?哪些是违规求助? 4481469
关于积分的说明 13947767
捐赠科研通 4379570
什么是DOI,文献DOI怎么找? 2406477
邀请新用户注册赠送积分活动 1399078
关于科研通互助平台的介绍 1372002