DeepMatcher: A deep transformer-based network for robust and accurate local feature matching

计算机科学 人工智能 模式识别(心理学) 变压器 特征(语言学) 特征提取 计算机视觉 电压 语言学 哲学 物理 量子力学
作者
Tao Xie,Kun Dai,Ke Wang,Ruifeng Li,Lina Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121361-121361 被引量:8
标识
DOI:10.1016/j.eswa.2023.121361
摘要

Local feature matching constitutes the cornerstone of multiple computer vision applications (e.g., 3D reconstruction and long-term visual localization), and has been successfully resolved by detector-free methods. To further improve the matching performance, more recent research has focused on designing sophisticated architectures but endures additional computational overhead. In this study, with a different perspective from previous studies, we aim to develop a deep and compact matching network to improve performance while reducing computing cost. The key insight is that a local feature matcher with deep layers can capture more human-intuitive and simpler-to-match features. To this end, we propose DeepMatcher, a deep transformer-based network that tackles the inherent obstacles of not being able to build a deep local feature matcher with current methods. DeepMatcher consists of: (1) a local feature extractor (LFE), (2) a feature-transition module (FTM), (3) a slimming transformer (SlimFormer), (4) a coarse matches module (CMM), and (5) a fine matches module (FMM). The LFE is utilized to generate dense keypoints with enriched features from the images. We then introduce the FTM to ensure a smooth transition of feature scopes from LFE to the subsequent SlimFormer because of their different receptive fields. Subsequently, we develop SlimFormer dedicated to DeepMatcher, which leverages vector-based attention to model the relevance among all keypoints, enabling the network to construct a deep Transformer architecture with less computational cost. Relative position encoding is applied to each SlimFormer to explicitly disclose the relative distance information, thereby improving the representation of the keypoints. A layer-scale strategy is also employed in each SlimFormer to enable the network to adaptively assimilate message exchange, thus endowing it to simulate human behavior, in which humans can acquire different matching cues each time they scan an image pair. By interleaving the self- and cross-SlimFormers multiple times, DeepMatcher can easily establish pixel-wise dense matches at the coarse level using the CMM. Finally, we consider match refinement as a combination of classification and regression problems and design an FMM to predict confidence and offset concurrently, thus generating robust and accurate matches. Compared with our baseline LoFTR in indoor/outdoor pose estimation, DeepMatcher surpasses it by 3.32%/2.91% in AUC@5∘. Besides, DeepMatcher and DeepMatcher-L significantly reduce computational cost and only consume 77.89% and 92.46% GFLOPs of LoFTR. Large DeepMatcher considerably outperforms state-of-the-art methods on several benchmarks, including outdoor pose estimation (MegaDepth dataset), indoor pose estimation (ScanNet dataset), homography estimation (HPatches dataset), and image matching (HPatches dataset), demonstrating the superior matching capability of a deep local feature matcher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
慕青应助drughunter009采纳,获得10
1秒前
阳光的皮皮虾完成签到,获得积分10
1秒前
2秒前
芝士肉肉丸完成签到,获得积分10
2秒前
2秒前
myS完成签到 ,获得积分10
2秒前
zhuchenglu完成签到,获得积分10
2秒前
maiyatang完成签到,获得积分10
3秒前
李爱国应助zts采纳,获得10
3秒前
3秒前
3秒前
Ming完成签到,获得积分10
3秒前
祝你发财完成签到,获得积分10
4秒前
4秒前
乂领域发布了新的文献求助10
5秒前
ssn发布了新的文献求助10
5秒前
子轩完成签到,获得积分10
6秒前
夏枯草完成签到,获得积分10
6秒前
CipherSage应助雪晴采纳,获得10
6秒前
6秒前
下小雨完成签到 ,获得积分10
6秒前
zhuang完成签到,获得积分10
6秒前
yuhangli完成签到,获得积分10
7秒前
7秒前
Yaxin完成签到,获得积分20
8秒前
8秒前
情怀应助文艺水风采纳,获得10
8秒前
大方的白开水完成签到,获得积分10
8秒前
神勇友灵完成签到,获得积分0
8秒前
小v完成签到 ,获得积分10
8秒前
wx发布了新的文献求助30
8秒前
9秒前
niuniu顺利毕业完成签到 ,获得积分10
9秒前
zdd完成签到 ,获得积分10
9秒前
zzz完成签到 ,获得积分10
9秒前
852应助su采纳,获得10
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439089
求助须知:如何正确求助?哪些是违规求助? 4550156
关于积分的说明 14222807
捐赠科研通 4471098
什么是DOI,文献DOI怎么找? 2450208
邀请新用户注册赠送积分活动 1441127
关于科研通互助平台的介绍 1417762