DeepMatcher: A deep transformer-based network for robust and accurate local feature matching

计算机科学 人工智能 模式识别(心理学) 变压器 特征(语言学) 特征提取 计算机视觉 电压 语言学 哲学 物理 量子力学
作者
Tao Xie,Kun Dai,Ke Wang,Ruifeng Li,Lina Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:237: 121361-121361 被引量:8
标识
DOI:10.1016/j.eswa.2023.121361
摘要

Local feature matching constitutes the cornerstone of multiple computer vision applications (e.g., 3D reconstruction and long-term visual localization), and has been successfully resolved by detector-free methods. To further improve the matching performance, more recent research has focused on designing sophisticated architectures but endures additional computational overhead. In this study, with a different perspective from previous studies, we aim to develop a deep and compact matching network to improve performance while reducing computing cost. The key insight is that a local feature matcher with deep layers can capture more human-intuitive and simpler-to-match features. To this end, we propose DeepMatcher, a deep transformer-based network that tackles the inherent obstacles of not being able to build a deep local feature matcher with current methods. DeepMatcher consists of: (1) a local feature extractor (LFE), (2) a feature-transition module (FTM), (3) a slimming transformer (SlimFormer), (4) a coarse matches module (CMM), and (5) a fine matches module (FMM). The LFE is utilized to generate dense keypoints with enriched features from the images. We then introduce the FTM to ensure a smooth transition of feature scopes from LFE to the subsequent SlimFormer because of their different receptive fields. Subsequently, we develop SlimFormer dedicated to DeepMatcher, which leverages vector-based attention to model the relevance among all keypoints, enabling the network to construct a deep Transformer architecture with less computational cost. Relative position encoding is applied to each SlimFormer to explicitly disclose the relative distance information, thereby improving the representation of the keypoints. A layer-scale strategy is also employed in each SlimFormer to enable the network to adaptively assimilate message exchange, thus endowing it to simulate human behavior, in which humans can acquire different matching cues each time they scan an image pair. By interleaving the self- and cross-SlimFormers multiple times, DeepMatcher can easily establish pixel-wise dense matches at the coarse level using the CMM. Finally, we consider match refinement as a combination of classification and regression problems and design an FMM to predict confidence and offset concurrently, thus generating robust and accurate matches. Compared with our baseline LoFTR in indoor/outdoor pose estimation, DeepMatcher surpasses it by 3.32%/2.91% in AUC@5∘. Besides, DeepMatcher and DeepMatcher-L significantly reduce computational cost and only consume 77.89% and 92.46% GFLOPs of LoFTR. Large DeepMatcher considerably outperforms state-of-the-art methods on several benchmarks, including outdoor pose estimation (MegaDepth dataset), indoor pose estimation (ScanNet dataset), homography estimation (HPatches dataset), and image matching (HPatches dataset), demonstrating the superior matching capability of a deep local feature matcher.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xqh完成签到,获得积分10
1秒前
拼搏的帽子完成签到 ,获得积分10
2秒前
luffy完成签到 ,获得积分10
3秒前
wang1完成签到 ,获得积分10
5秒前
天天快乐应助元明清采纳,获得30
7秒前
lmq完成签到 ,获得积分10
8秒前
yanglinhai完成签到 ,获得积分10
10秒前
ZS完成签到,获得积分10
11秒前
Lei发布了新的文献求助10
11秒前
头发乱了发布了新的文献求助20
16秒前
Panini完成签到 ,获得积分10
16秒前
ttqql完成签到,获得积分10
16秒前
sunnyqqz完成签到,获得积分10
19秒前
22秒前
幽默赛君完成签到 ,获得积分10
22秒前
淡然以柳完成签到 ,获得积分10
22秒前
Jasper应助重庆森林采纳,获得10
26秒前
Lei完成签到,获得积分10
28秒前
酷炫觅双完成签到 ,获得积分10
29秒前
Edou完成签到,获得积分10
30秒前
烟火会翻滚完成签到,获得积分10
30秒前
41秒前
44秒前
June完成签到,获得积分10
46秒前
xz发布了新的文献求助10
48秒前
sll完成签到 ,获得积分10
50秒前
zx完成签到 ,获得积分10
50秒前
t铁核桃1985完成签到 ,获得积分10
52秒前
xzy998应助科研通管家采纳,获得10
57秒前
万能图书馆应助科研通管家采纳,获得150
57秒前
科目三应助科研通管家采纳,获得10
57秒前
完美世界应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
丘比特应助科研通管家采纳,获得10
57秒前
57秒前
MC123完成签到,获得积分10
58秒前
美好灵寒完成签到 ,获得积分10
58秒前
ESC惠子子子子子完成签到 ,获得积分10
59秒前
着急的果汁完成签到 ,获得积分10
1分钟前
zz完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188071
求助须知:如何正确求助?哪些是违规求助? 4372504
关于积分的说明 13613427
捐赠科研通 4225688
什么是DOI,文献DOI怎么找? 2317866
邀请新用户注册赠送积分活动 1316437
关于科研通互助平台的介绍 1266095