Deep learning for automated measurement of CSA related acromion morphological parameters on anteroposterior radiographs

医学 射线照相术 肩峰 核医学 分割 人工智能 皮尔逊积矩相关系数 肩袖 放射科 计算机科学 统计 数学
作者
Yamuhanmode Alike,Cheng Li,Jingyi Hou,Yi Liu,Zongda Zhang,Mengjie Ye,Rui Yang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:168: 111083-111083
标识
DOI:10.1016/j.ejrad.2023.111083
摘要

The Critical Shoulder Angle Related Acromion Morphological Parameter (CSA- RAMP) is a valuable tool in the analyzing the etiology of the rotator cuff tears (RCTs). However, its clinical application has been limited by the time-consuming and prone to inter- and intra-user variability of the measurement process.To develop and validate a deep learning algorithm for fully automated assessment of shoulder anteroposterior radiographs associated with RCTs and calculation of CSA-RAMP.Retrospective analysis was conducted on radiographs obtained from computed tomography (CT) scans and X-rays performed between 2018 and 2020 at our institution. The development of the system involved the utilization of digitally reconstructed radiographs (DRRs) generated from each CT scan. The system's performance was evaluated by comparing it with manual and semiautomated measurements on two separate test datasets: dataset I (DRRs) and dataset II (X-rays). Standard metrics, including mean average precision (AP), were utilized to assess the segmentation performance. Additionally, the consistency among fully automated, semiautomated, and manual measurements was comprehensively evaluated using the Pearson correlation coefficient and Bland-Altman analysis.A total of 1080 DRRs generated from 120 consecutive CT scans and 159 X-ray films were included in the study. The algorithm demonstrated excellent segmentation performance, with a mean AP of 57.67 and an AP50 of 94.31. Strong inter-group correlations were observed for all CSA-RAMP measurements in both test datasets I (automated versus manual, automated versus semiautomated, and semiautomated versus manual; r = [0.990---0.997], P < 0.001) and dataset II (r = [0.984---0.995], P < 0.001). Bland-Altman analysis revealed low bias for all CSA-RAMP measurements in both test datasets I and II, except for CD (with a maximum bias of 2.49%).We have successfully developed a fully automated algorithm capable of rapidly and accurately measuring CSA-RAMP on shoulder anteroposterior radiographs. A consistent automated CSA- RAMP measurement system may accelerate powerful and precise studies of disease biology in future large cohorts of RCTs patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LXJ发布了新的文献求助10
1秒前
小樊up完成签到,获得积分10
1秒前
cqh发布了新的文献求助10
1秒前
1秒前
4秒前
qifeng发布了新的文献求助10
5秒前
5秒前
xinxin完成签到,获得积分10
5秒前
6秒前
练习者发布了新的文献求助20
8秒前
8秒前
lovely发布了新的文献求助10
9秒前
9秒前
野原发布了新的文献求助10
10秒前
10秒前
菠萝吹雪完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
乌拉拉啦啦啦完成签到 ,获得积分10
13秒前
紫薯球发布了新的文献求助10
13秒前
柔柔完成签到,获得积分10
16秒前
weddcf发布了新的文献求助10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
18秒前
共享精神应助12345采纳,获得10
18秒前
18秒前
CWNU_HAN应助bxyyy采纳,获得30
19秒前
火星上盼山完成签到,获得积分10
19秒前
20秒前
科研通AI2S应助Rita采纳,获得10
20秒前
21秒前
个性的紫菜应助iTaciturne采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145513
求助须知:如何正确求助?哪些是违规求助? 2796938
关于积分的说明 7822093
捐赠科研通 2453230
什么是DOI,文献DOI怎么找? 1305516
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464