A privacy preserving graph neural networks framework by protecting user’s attributes

计算机科学 差别隐私 同态加密 加密 信息敏感性 信息泄露 计算机安全 私人信息检索 图形 节点(物理) 理论计算机科学 数据挖掘 计算机网络 结构工程 工程类
作者
Li Zhou,Li Wang,Dongmei Fan,Haifeng Zhang,Kai Zhong
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier]
卷期号:629: 129187-129187
标识
DOI:10.1016/j.physa.2023.129187
摘要

Graph neural networks (GNNs) can learn the node representations to capture both node features and graph topology information through the message passing mechanism. However, since the information collected by GNNs is often used without authorization or maliciously attacked by hackers, which may result in leakage of users' private information. To this end, we propose a privacy preserving GNNs framework, which not only protects the attribute privacy but also performs well in various downstream tasks. Specifically, when the users communicate with the third party, Paillier homomorphic encryption (HE) is used to encrypt users' sensitive attribute information to prevent privacy leakage. Considering that the third party may be untrustworthy, differential privacy (DP) with Laplace mechanism is carried out to add noise to sensitive attribute information before transmission, so that the real attribute information is not accessible to the third party. Subsequently, the third party trains the GNNs model by using both the privacy preserving attribute information and public network topology information. Extensive experimental results show that, compared with the state-of-the-art methods, the privacy preserving GNNs still achieves satisfactory performance regarding different downstream tasks, such as node classification and link prediction while protecting the sensitive attributes of individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DAYTOY完成签到,获得积分10
刚刚
1秒前
1秒前
Flllllll完成签到,获得积分10
1秒前
喜悦成威完成签到,获得积分10
1秒前
酷波er应助南佳采纳,获得10
2秒前
2秒前
2秒前
Ava应助yan儿采纳,获得10
2秒前
丘比特应助纯真的莫茗采纳,获得10
2秒前
无花果应助勤恳的素阴采纳,获得10
2秒前
调皮的妙竹完成签到,获得积分10
3秒前
沫沫完成签到,获得积分10
3秒前
wzp发布了新的文献求助10
3秒前
3秒前
程程完成签到,获得积分20
3秒前
打打应助Ll采纳,获得10
3秒前
乐观发卡完成签到,获得积分20
4秒前
安详的帽子完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
vivi猫小咪发布了新的文献求助10
5秒前
Sue完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Lucas应助南方姑娘采纳,获得10
6秒前
7秒前
zhing完成签到,获得积分10
7秒前
XHH完成签到 ,获得积分0
7秒前
小蘑菇应助sv采纳,获得10
8秒前
欢呼橘子完成签到 ,获得积分10
8秒前
季夏完成签到,获得积分10
8秒前
喜悦成威发布了新的文献求助20
8秒前
大菠萝发布了新的文献求助10
9秒前
9秒前
德德发布了新的文献求助10
9秒前
天天快乐应助Silence采纳,获得10
10秒前
深爱不疑发布了新的文献求助200
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762