A privacy preserving graph neural networks framework by protecting user’s attributes

计算机科学 差别隐私 同态加密 加密 信息敏感性 信息泄露 计算机安全 私人信息检索 图形 节点(物理) 理论计算机科学 数据挖掘 计算机网络 结构工程 工程类
作者
Li Zhou,Li Wang,Dongmei Fan,Haifeng Zhang,Kai Zhong
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:629: 129187-129187
标识
DOI:10.1016/j.physa.2023.129187
摘要

Graph neural networks (GNNs) can learn the node representations to capture both node features and graph topology information through the message passing mechanism. However, since the information collected by GNNs is often used without authorization or maliciously attacked by hackers, which may result in leakage of users' private information. To this end, we propose a privacy preserving GNNs framework, which not only protects the attribute privacy but also performs well in various downstream tasks. Specifically, when the users communicate with the third party, Paillier homomorphic encryption (HE) is used to encrypt users' sensitive attribute information to prevent privacy leakage. Considering that the third party may be untrustworthy, differential privacy (DP) with Laplace mechanism is carried out to add noise to sensitive attribute information before transmission, so that the real attribute information is not accessible to the third party. Subsequently, the third party trains the GNNs model by using both the privacy preserving attribute information and public network topology information. Extensive experimental results show that, compared with the state-of-the-art methods, the privacy preserving GNNs still achieves satisfactory performance regarding different downstream tasks, such as node classification and link prediction while protecting the sensitive attributes of individuals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助陈某某采纳,获得10
刚刚
宠仙发布了新的文献求助10
1秒前
2秒前
2秒前
siestaMiao发布了新的文献求助10
3秒前
猫科动物发布了新的文献求助10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
孟__发布了新的文献求助10
5秒前
6秒前
jackgu完成签到,获得积分10
6秒前
今后应助干净的夜蓉采纳,获得10
6秒前
7秒前
8秒前
8秒前
89发布了新的文献求助10
8秒前
8秒前
斯文败类应助echo采纳,获得10
9秒前
LGH发布了新的文献求助10
9秒前
mingming发布了新的文献求助10
10秒前
读者发布了新的文献求助10
10秒前
jackgu发布了新的文献求助10
11秒前
11秒前
伏波完成签到,获得积分0
11秒前
11秒前
huazhangchina发布了新的文献求助10
11秒前
橘子完成签到,获得积分10
13秒前
帅的一批发布了新的文献求助10
13秒前
shweah2003完成签到,获得积分0
13秒前
顾矜应助猫科动物采纳,获得10
13秒前
丘比特应助siestaMiao采纳,获得10
13秒前
14秒前
香精发布了新的文献求助10
14秒前
Jasper应助hu采纳,获得10
14秒前
CodeCraft应助依古比古采纳,获得10
15秒前
领导范儿应助蒸馒头争气采纳,获得10
15秒前
派大星完成签到 ,获得积分10
15秒前
golf完成签到,获得积分10
16秒前
聪慧芷巧应助SmileLin采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198