Identify production area, growth mode, species, and grade of Astragali Radix using metabolomics “big data” and machine learning

代谢组学 大数据 根(腹足类) 传统医学 生产(经济) 化学 色谱法 生物 计算机科学 医学 数据挖掘 植物 宏观经济学 经济
作者
Jing Wu,Shaoqian Deng,Xinyue Yu,Y S Wu,Xiaoyi Hua,Zunjian Zhang,Yin Huang
出处
期刊:Phytomedicine [Elsevier]
卷期号:123: 155201-155201 被引量:2
标识
DOI:10.1016/j.phymed.2023.155201
摘要

Astragali Radix (AR) is a widely used herbal medicine. The quality of AR is influenced by several key factors, including the production area, growth mode, species, and grade. However, the markers currently used to distinguish these factors primarily focus on secondary metabolites, and their validation on large-scale samples is lacking. This study aims to discover reliable markers and develop classification models for identifying the production area, growth mode, species, and grade of AR. A total of 366 batches of AR crude slices were collected from six provinces in China and divided into learning (n = 191) and validation (n = 175) sets. Three ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods were developed and validated for determining 22 primary and 10 secondary metabolites in AR methanol extract. Based on the quantification data, seven machine learning algorithms, such as Nearest Neighbors and Gradient Boosted Trees, were applied to screen the potential markers and build the classification models for identifying the four factors associated with AR quality. Our analysis revealed that secondary metabolites (e.g., astragaloside IV, calycosin-7-O-β-D-glucoside, and ononin) played a crucial role in evaluating AR quality, particularly in identifying the production area and species. Additionally, fatty acids (e.g., behenic acid and lignoceric acid) were vital in determining the growth mode of AR, while amino acids (e.g., alanine and phenylalanine) were helpful in distinguishing different grades. With both primary and secondary metabolites, the Nearest Neighbors algorithm-based model was constructed for identifying each factor of AR, achieving good classification accuracy (>70%) on the validation set. Furthermore, a panel of four metabolites including ononin, astragaloside II, pentadecanoic acid, and alanine, allowed for simultaneous identification of all four factors of AR, offering an accuracy of 86.9%. Our findings highlight the potential of integrating large-scale targeted metabolomics and machine learning approaches to accurately identify the quality-associated factors of AR. This study opens up possibilities for enhancing the evaluation of other herbal medicines through similar methodologies, and further exploration in this area is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yumi2225完成签到,获得积分10
3秒前
何处西风无酒旗完成签到,获得积分10
3秒前
lemonlmm应助IAMXC采纳,获得30
3秒前
3秒前
5秒前
5秒前
求助求助发布了新的文献求助30
6秒前
8秒前
袁妞妞发布了新的文献求助10
9秒前
mxy发布了新的文献求助10
9秒前
young发布了新的文献求助10
10秒前
豚骨拉面完成签到,获得积分10
11秒前
12秒前
小黄人发布了新的文献求助10
12秒前
杨旸发布了新的文献求助10
12秒前
Zggzs发布了新的文献求助10
12秒前
思绪摸摸头完成签到 ,获得积分10
13秒前
13秒前
dingtao完成签到,获得积分10
13秒前
乐乐乐乐乐乐应助丽丽呀采纳,获得10
14秒前
顾矜应助joker采纳,获得10
14秒前
明理含之完成签到,获得积分10
14秒前
WEN完成签到 ,获得积分10
15秒前
烟花应助Ustinian采纳,获得30
16秒前
whatever应助mxy采纳,获得20
16秒前
17秒前
快乐科研完成签到,获得积分10
17秒前
豚骨拉面发布了新的文献求助200
17秒前
qzxwsa发布了新的文献求助10
18秒前
18秒前
22秒前
小破橙完成签到 ,获得积分10
22秒前
26秒前
26秒前
27秒前
zzp完成签到,获得积分10
27秒前
27秒前
我下载不了论文啊完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145589
求助须知:如何正确求助?哪些是违规求助? 2797005
关于积分的说明 7822454
捐赠科研通 2453273
什么是DOI,文献DOI怎么找? 1305573
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464