Intelligent quantitative recognition of sulfide using machine learning-based ratiometric fluorescence probe of metal-organic framework UiO-66-NH2/Ppix

荧光 硫化物 RGB颜色模型 化学 部分 人工智能 分析化学(期刊) 计算机科学 色谱法 立体化学 有机化学 光学 物理
作者
Degui Wang,Long Yu,Xin Li,Yunfei Lu,Chaoqun Niu,Penghui Fan,Houjuan Zhu,Bing Chen,Suhua Wang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:464: 132950-132950 被引量:9
标识
DOI:10.1016/j.jhazmat.2023.132950
摘要

Sulfides possess either high toxicity or play crucial physiological role such as gas transmitter dependent upon dosage, hence the significant for their rapid sensitive and selective concentration determination. Herein, a machine learning enhanced ratiometric fluorescence sensor was engineered for sulfide determination by incorporating the nanometal-organic framework (UiO-66-NH2) along with protoporphyrin IX (Ppix). The blue fluorescence at 431 nm originated from the moiety of UiO-66-NH2 by 365 nm excitation serves as an internal calibration reference signal, while the red fluorescence at 629 nm from the moiety of Ppix serves as the analytical signal, and the intensity is correlated to the amount of sulfides. The fluorescence color of the sensor gradually varies from blue to red upon sequential addition of copper and sulfide ions, resulting in RGB (Red, Green, Blue) feature values for corresponding sulfide concentrations, which facilities the advanced data processing techniques using machine learning algorithms. On the basis of fluorescence image fingerprint extraction and machine learning algorithms, an online data analysis model was developed to improve the precision and accuracy of sulfide determination. The established model employed Linear Discriminant Analysis (LDA) and was subjected to rigorous cross-validation to ensure its robustness. By analyzing the correlation between RGB feature values and sulfide concentrations, the study highlighted a significant positive relationship between the red feature values and sulfide concentrations. The application of machine learning techniques on the ratiometric fluorescence signal of the UiO-66-NH2/Ppix probe demonstrated its potential for intelligent quantitative determination of sulfides, offering a valuable and efficient tool for pollution detection and real-time rapid environmental monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助淡淡菠萝采纳,获得10
2秒前
不知道发布了新的文献求助30
3秒前
幽默微笑发布了新的文献求助10
4秒前
5秒前
小蘑菇应助H-China采纳,获得10
6秒前
北过完成签到,获得积分10
7秒前
阳光总在风雨后完成签到,获得积分10
7秒前
9秒前
10秒前
caixia28256完成签到,获得积分10
10秒前
高贵季节发布了新的文献求助10
11秒前
11秒前
秋秋完成签到,获得积分10
14秒前
阳光的道消完成签到,获得积分10
14秒前
15秒前
15秒前
圆潘发布了新的文献求助10
15秒前
JamesPei应助刻苦的元风采纳,获得10
16秒前
传奇3应助nZk采纳,获得30
16秒前
16秒前
LZH发布了新的文献求助10
17秒前
18秒前
vv关闭了vv文献求助
18秒前
星河鱼发布了新的文献求助10
20秒前
皓月孤烟完成签到,获得积分10
20秒前
cx完成签到,获得积分10
21秒前
21秒前
九月完成签到 ,获得积分10
21秒前
研友_nV2Npn完成签到,获得积分10
23秒前
十公里完成签到,获得积分10
24秒前
易安发布了新的文献求助10
26秒前
27秒前
wanci应助Radium采纳,获得10
27秒前
27秒前
安静的明辉完成签到,获得积分10
28秒前
29秒前
YEEze完成签到,获得积分10
29秒前
徐妙菱完成签到,获得积分10
29秒前
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140679
求助须知:如何正确求助?哪些是违规求助? 2791473
关于积分的说明 7799108
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302064
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194