MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks

计算机科学 人工智能 可解释性 稳健性(进化) 机器学习 模块化设计 任务(项目管理) 特征(语言学) 概率逻辑 基因 操作系统 生物化学 哲学 经济 化学 管理 语言学
作者
Vinitra Swamy,Malika Satayeva,Jibril Frej,Thierry Bossy,Thijs Vogels,Martin Jäggi,Tanja Käser,Mary-Anne Hartley
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.14118
摘要

Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned semantic meaning across inputs of drastically varying sizes (i.e. images, text, sound). Most current MM architectures fuse these representations in parallel, which not only limits their interpretability but also creates a dependency on modality availability. We present MultiModN, a multimodal, modular network that fuses latent representations in a sequence of any number, combination, or type of modality while providing granular real-time predictive feedback on any number or combination of predictive tasks. MultiModN's composable pipeline is interpretable-by-design, as well as innately multi-task and robust to the fundamental issue of biased missingness. We perform four experiments on several benchmark MM datasets across 10 real-world tasks (predicting medical diagnoses, academic performance, and weather), and show that MultiModN's sequential MM fusion does not compromise performance compared with a baseline of parallel fusion. By simulating the challenging bias of missing not-at-random (MNAR), this work shows that, contrary to MultiModN, parallel fusion baselines erroneously learn MNAR and suffer catastrophic failure when faced with different patterns of MNAR at inference. To the best of our knowledge, this is the first inherently MNAR-resistant approach to MM modeling. In conclusion, MultiModN provides granular insights, robustness, and flexibility without compromising performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
科研通AI5应助wangyanwxy采纳,获得10
3秒前
36456657应助豆dou采纳,获得10
3秒前
4秒前
4秒前
5秒前
buno应助jy采纳,获得10
6秒前
paparazzi221发布了新的文献求助10
7秒前
田生完成签到,获得积分10
7秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
7秒前
7秒前
爆米花应助towerman采纳,获得10
8秒前
羊笨笨完成签到 ,获得积分10
8秒前
9秒前
光亮芷天完成签到,获得积分10
9秒前
9秒前
10秒前
粗犷的问夏完成签到,获得积分10
11秒前
知行合一完成签到 ,获得积分10
12秒前
12秒前
13秒前
李爱国应助晨曦采纳,获得10
14秒前
0128lun发布了新的文献求助10
14秒前
phd发布了新的文献求助10
15秒前
君无名完成签到 ,获得积分10
15秒前
经年发布了新的文献求助10
15秒前
QXR完成签到,获得积分10
16秒前
豆dou完成签到,获得积分10
16秒前
Dddd发布了新的文献求助10
16秒前
HCl完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
Hollen完成签到 ,获得积分10
20秒前
慕青应助学术蠕虫采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808