MultiModN- Multimodal, Multi-Task, Interpretable Modular Networks

计算机科学 人工智能 可解释性 稳健性(进化) 机器学习 模块化设计 任务(项目管理) 特征(语言学) 概率逻辑 基因 操作系统 生物化学 哲学 经济 化学 管理 语言学
作者
Vinitra Swamy,Malika Satayeva,Jibril Frej,Thierry Bossy,Thijs Vogels,Martin Jäggi,Tanja Käser,Mary-Anne Hartley
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2309.14118
摘要

Predicting multiple real-world tasks in a single model often requires a particularly diverse feature space. Multimodal (MM) models aim to extract the synergistic predictive potential of multiple data types to create a shared feature space with aligned semantic meaning across inputs of drastically varying sizes (i.e. images, text, sound). Most current MM architectures fuse these representations in parallel, which not only limits their interpretability but also creates a dependency on modality availability. We present MultiModN, a multimodal, modular network that fuses latent representations in a sequence of any number, combination, or type of modality while providing granular real-time predictive feedback on any number or combination of predictive tasks. MultiModN's composable pipeline is interpretable-by-design, as well as innately multi-task and robust to the fundamental issue of biased missingness. We perform four experiments on several benchmark MM datasets across 10 real-world tasks (predicting medical diagnoses, academic performance, and weather), and show that MultiModN's sequential MM fusion does not compromise performance compared with a baseline of parallel fusion. By simulating the challenging bias of missing not-at-random (MNAR), this work shows that, contrary to MultiModN, parallel fusion baselines erroneously learn MNAR and suffer catastrophic failure when faced with different patterns of MNAR at inference. To the best of our knowledge, this is the first inherently MNAR-resistant approach to MM modeling. In conclusion, MultiModN provides granular insights, robustness, and flexibility without compromising performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无奈的如柏完成签到,获得积分20
1秒前
jjx1005完成签到 ,获得积分10
2秒前
只要平凡发布了新的文献求助10
2秒前
3秒前
刁刁发布了新的文献求助10
4秒前
飞上天的皮蛋完成签到,获得积分10
6秒前
zho应助WDWK采纳,获得10
9秒前
9秒前
稳重的悟空完成签到 ,获得积分10
11秒前
jiangxiaoyu完成签到 ,获得积分10
13秒前
骅骝发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
鬼小妞nice完成签到 ,获得积分10
17秒前
受伤芝麻完成签到,获得积分10
18秒前
任性迎南发布了新的文献求助10
20秒前
王青文完成签到,获得积分10
20秒前
受伤芝麻发布了新的文献求助10
20秒前
天边发布了新的文献求助10
22秒前
24秒前
26秒前
科研通AI5应助六七十三采纳,获得10
26秒前
28秒前
28秒前
席红旗发布了新的文献求助10
29秒前
丘比特应助天边采纳,获得10
30秒前
30秒前
梦梦的小可爱完成签到 ,获得积分10
30秒前
StrawCc完成签到,获得积分10
30秒前
科研通AI2S应助糊涂的板凳采纳,获得10
31秒前
李健应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
ding应助科研通管家采纳,获得30
31秒前
星辰大海应助科研通管家采纳,获得10
32秒前
ED应助科研通管家采纳,获得20
32秒前
wanci应助科研通管家采纳,获得30
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712