D-VINS: Dynamic Adaptive Visual–Inertial SLAM with IMU Prior and Semantic Constraints in Dynamic Scenes

计算机科学 惯性测量装置 人工智能 计算机视觉 稳健性(进化) 惯性参考系 同时定位和映射 帧(网络) 机器人 移动机器人 生物化学 量子力学 电信 基因 物理 化学
作者
Yang Sun,Qing Wang,Chao Yan,Youyang Feng,Rongxuan Tan,Xiaoqiong Shi,Xueyan Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (15): 3881-3881 被引量:2
标识
DOI:10.3390/rs15153881
摘要

Visual–inertial SLAM algorithms empower robots to autonomously explore and navigate unknown scenes. However, most existing SLAM systems heavily rely on the assumption of static environments, making them ineffective when confronted with dynamic objects in the real world. To enhance the robustness and localization accuracy of SLAM systems in dynamic scenes, this paper introduces a visual–inertial SLAM framework that integrates semantic and geometric information, called D-VINS. This paper begins by presenting a method for dynamic object classification based on the current motion state of features, enabling the identification of temporary static features within the environment. Subsequently, a feature dynamic check module is devised, which utilizes inertial measurement unit (IMU) prior information and geometric constraints from adjacent frames to calculate dynamic factors. This module also validates the classification outcomes of the temporary static features. Finally, a dynamic adaptive bundle adjustment module is developed, utilizing the dynamic factors of the features to adjust their weights during the nonlinear optimization process. The proposed methodology is evaluated using both public datasets and a dataset created specifically for this study. The experimental results demonstrate that D-VINS stands as one of the most real-time, accurate, and robust systems for dynamic scenes, showcasing its effectiveness in challenging real-world scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助猪肉水饺采纳,获得10
1秒前
共享精神应助卿雪尔采纳,获得10
1秒前
2秒前
斯文败类应助认真谷雪采纳,获得10
2秒前
乐乐完成签到 ,获得积分10
3秒前
Caism发布了新的文献求助10
3秒前
英俊的铭应助张雯思采纳,获得10
4秒前
wu8577应助张雯思采纳,获得10
4秒前
sweat发布了新的文献求助10
5秒前
6秒前
程瑞哲发布了新的文献求助10
6秒前
橙橙橙完成签到,获得积分10
6秒前
7秒前
SHAO应助瘦瘦妖妖采纳,获得10
7秒前
Owen应助arabidopsis采纳,获得30
7秒前
8秒前
22222发布了新的文献求助30
8秒前
古月发布了新的文献求助10
9秒前
9秒前
10秒前
英吉利25发布了新的文献求助10
11秒前
11秒前
猪肉水饺发布了新的文献求助10
11秒前
oyx53发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
善学以致用应助古月采纳,获得10
13秒前
Akim应助ZHC采纳,获得10
13秒前
cckyt完成签到,获得积分10
13秒前
娜娜完成签到,获得积分20
14秒前
猪肉水饺完成签到,获得积分10
14秒前
桐桐应助Caism采纳,获得10
15秒前
李健的小迷弟应助paopao采纳,获得10
15秒前
liangxue应助hqq131456采纳,获得10
15秒前
看文献了发布了新的文献求助10
16秒前
18秒前
21秒前
22秒前
mm关闭了mm文献求助
22秒前
orixero应助尼克狐尼克采纳,获得10
22秒前
打打应助雨衣采纳,获得10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019