Multitask joint learning with graph autoencoders for predicting potential MiRNA-drug associations

多任务学习 计算机科学 自编码 机器学习 人工智能 嵌入 图嵌入 图形 特征学习 稳健性(进化) 深度学习 任务(项目管理) 理论计算机科学 经济 生物化学 化学 基因 管理
作者
Yichen Zhong,Cong Shen,Xiaoting Xi,Yuxun Luo,Pingjian Ding,Lingyun Luo
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:145: 102665-102665
标识
DOI:10.1016/j.artmed.2023.102665
摘要

The occurrence of many diseases is associated with miRNA abnormalities. Predicting potential drug-miRNA associations is of great importance for both disease treatment and new drug discovery. Most computation-based approaches learn one task at a time, ignoring the information contained in other tasks in the same domain. Multitask learning can effectively enhance the prediction performance of a single task by extending the valid information of related tasks. In this paper, we presented a multitask joint learning framework (MTJL) with a graph autoencoder for predicting the associations between drugs and miRNAs. First, we combined multiple pieces of information to construct a high-quality similarity network of both drugs and miRNAs and then used a graph autoencoder (GAE) to learn their embedding representations separately. Second, to further improve the embedding quality of drugs, we added an auxiliary task to classify drugs using the learned representations. Finally, the embedding representations of drugs and miRNAs were linearly transformed to obtain the predictive association scores between them. A comparison with other state-of-the-art models shows that MTJL has the best prediction performance, and ablation experiments show that the auxiliary task can enhance the embedding quality and improve the robustness of the model. In addition, we show that MTJL has high utility in predicting potential associations between drugs and miRNAs by conducting two case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助1111采纳,获得10
刚刚
大个应助215858687采纳,获得50
1秒前
核桃应助要减肥小小采纳,获得200
2秒前
共享精神应助要减肥小小采纳,获得10
2秒前
man完成签到 ,获得积分10
2秒前
林志完成签到,获得积分10
2秒前
云墨完成签到 ,获得积分10
3秒前
3秒前
TAC发布了新的文献求助10
3秒前
喜乐完成签到 ,获得积分10
3秒前
大气凝云发布了新的文献求助10
4秒前
Zirong发布了新的文献求助10
4秒前
iNk应助12366666采纳,获得20
4秒前
4秒前
犹豫的稀发布了新的文献求助10
4秒前
完美世界应助科研通管家采纳,获得10
5秒前
南北完成签到,获得积分10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
5秒前
wy.he应助科研通管家采纳,获得30
5秒前
6秒前
May应助科研通管家采纳,获得30
6秒前
李健应助科研通管家采纳,获得10
6秒前
nyddyy发布了新的文献求助10
6秒前
masaaki应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
masaaki应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
香蕉觅云应助小小阿杰采纳,获得10
7秒前
yuyu完成签到,获得积分10
7秒前
yookia应助钟123采纳,获得10
7秒前
小马甲应助钟123采纳,获得10
7秒前
有点意思完成签到,获得积分10
8秒前
小脚丫发布了新的文献求助10
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180