A DRL-Driven Intelligent Optimization Strategy for Resource Allocation in Cloud-Edge-End Cooperation Environments

计算机科学 云计算 计算机网络 异构网络 隐藏物 服务质量 分布式计算 互联网 无线网络 无线 电信 万维网 操作系统
作者
Chao Fang,Tianyi Zhang,Jingjing Huang,Hang Xu,Zhaoming Hu,Yihui Yang,Zhuwei Wang,Zequan Zhou,Xiling Luo
出处
期刊:Symmetry [MDPI AG]
卷期号:14 (10): 2120-2120 被引量:13
标识
DOI:10.3390/sym14102120
摘要

Complex dynamic services and heterogeneous network environments make the asymmetrical control a curial issue to handle on the Internet. With the advent of the Internet of Things (IoT) and the fifth generation (5G), the emerging network applications lead to the explosive growth of mobile traffic while bringing forward more challenging service requirements to future radio access networks. Therefore, how to effectively allocate limited heterogeneous network resources to improve content delivery for massive application services to ensure network quality of service (QoS) becomes particularly urgent in heterogeneous network environments. To cope with the explosive mobile traffic caused by emerging Internet services, this paper designs an intelligent optimization strategy based on deep reinforcement learning (DRL) for resource allocation in heterogeneous cloud-edge-end collaboration environments. Meanwhile, the asymmetrical control problem caused by complex dynamic services and heterogeneous network environments is discussed and overcome by distributed cooperation among cloud-edge-end nodes in the system. Specifically, the multi-layer heterogeneous resource allocation problem is formulated as a maximal traffic offloading model, where content caching and request aggregation mechanisms are utilized. A novel DRL policy is proposed to improve content distribution by making cache replacement and task scheduling for arriving content requests in accordance with the information about users’ history requests, in-network cache capacity, available link bandwidth and topology structure. The performance of our proposed solution and its similar counterparts are analyzed in different network conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到 ,获得积分10
刚刚
李爱国应助乐正怡采纳,获得10
2秒前
快乐冷风完成签到,获得积分10
3秒前
852应助Lyensa采纳,获得10
7秒前
dajun应助HIT_C采纳,获得30
7秒前
10秒前
星月完成签到 ,获得积分10
11秒前
迷人囧完成签到 ,获得积分10
17秒前
池鱼发布了新的文献求助10
20秒前
Esfuerzo发布了新的文献求助20
26秒前
29秒前
32秒前
xxh完成签到,获得积分10
33秒前
伟大人物发布了新的文献求助10
34秒前
34秒前
36秒前
38秒前
LLP发布了新的文献求助30
39秒前
顺利的平安完成签到,获得积分10
42秒前
42秒前
zxh完成签到,获得积分10
47秒前
48秒前
deswin完成签到 ,获得积分10
50秒前
星星完成签到 ,获得积分10
50秒前
Kashing发布了新的文献求助10
52秒前
Moliria发布了新的文献求助10
53秒前
瑕灬完成签到,获得积分10
56秒前
lin完成签到 ,获得积分10
57秒前
徐执默完成签到,获得积分0
1分钟前
徐小树发布了新的文献求助10
1分钟前
1分钟前
任性的傲柏完成签到,获得积分10
1分钟前
goahead0523发布了新的文献求助10
1分钟前
1分钟前
汉堡包应助qin采纳,获得10
1分钟前
1分钟前
1分钟前
瑕灬发布了新的文献求助20
1分钟前
科研临床两手抓完成签到 ,获得积分10
1分钟前
一sh发布了新的文献求助10
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Kidney Transplantation: Principles and Practice 1000
The moderating role of collaborative capacity in the relationship between ecological niche-fitness and innovation investment: an ecosystem perspective 800
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371130
求助须知:如何正确求助?哪些是违规求助? 2989336
关于积分的说明 8735366
捐赠科研通 2672504
什么是DOI,文献DOI怎么找? 1464014
科研通“疑难数据库(出版商)”最低求助积分说明 677394
邀请新用户注册赠送积分活动 668645