Interpretable prediction of mortality in liver transplant recipients based on machine learning

人工智能 机器学习 计算机科学
作者
Xiao Zhang,Ricard Gavaldà,Jaume Baixeries
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106188-106188 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.106188
摘要

Accurate prediction of the mortality of post-liver transplantation is an important but challenging task. It relates to optimizing organ allocation and estimating the risk of possible dysfunction. Existing risk scoring models, such as the Balance of Risk (BAR) score and the Survival Outcomes Following Liver Transplantation (SOFT) score, do not predict the mortality of post-liver transplantation with sufficient accuracy. In this study, we evaluate the performance of machine learning models and establish an explainable machine learning model for predicting mortality in liver transplant recipients.The optimal feature set for the prediction of the mortality was selected by a wrapper method based on binary particle swarm optimization (BPSO). With the selected optimal feature set, seven machine learning models were applied to predict mortality over different time windows. The best-performing model was used to predict mortality through a comprehensive comparison and evaluation. An interpretable approach based on machine learning and SHapley Additive exPlanations (SHAP) is used to explicitly explain the model's decision and make new discoveries.With regard to predictive power, our results demonstrated that the feature set selected by BPSO outperformed both the feature set in the existing risk score model (BAR score, SOFT score) and the feature set processed by principal component analysis (PCA). The best-performing model, extreme gradient boosting (XGBoost), was found to improve the Area Under a Curve (AUC) values for mortality prediction by 6.7%, 11.6%, and 17.4% at 3 months, 3 years, and 10 years, respectively, compared to the SOFT score. The main predictors of mortality and their impact were discussed for different age groups and different follow-up periods.Our analysis demonstrates that XGBoost can be an ideal method to assess the mortality risk in liver transplantation. In combination with the SHAP approach, the proposed framework provides a more intuitive and comprehensive interpretation of the predictive model, thereby allowing the clinician to better understand the decision-making process of the model and the impact of factors associated with mortality risk in liver transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
车轮滚滚发布了新的文献求助10
刚刚
清风徐来发布了新的文献求助10
刚刚
洁净白容发布了新的文献求助10
刚刚
1秒前
1秒前
ljj发布了新的文献求助10
1秒前
SWL发布了新的文献求助10
2秒前
zf发布了新的文献求助10
2秒前
yuyu发布了新的文献求助10
3秒前
zz发布了新的文献求助10
3秒前
3秒前
淡淡仙人掌完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
上官若男应助淡淡冰薇采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
strategy完成签到,获得积分10
5秒前
wxq完成签到 ,获得积分10
6秒前
xiao茗完成签到,获得积分10
6秒前
killler发布了新的文献求助10
6秒前
6秒前
CAOHOU应助哈喽采纳,获得10
7秒前
7秒前
7秒前
NexusExplorer应助窗外落霞采纳,获得30
7秒前
洁净白容完成签到,获得积分10
7秒前
7秒前
7秒前
晨曦发布了新的文献求助10
8秒前
友好驳完成签到,获得积分10
8秒前
yuanzhennihao发布了新的文献求助10
9秒前
mingming发布了新的文献求助10
9秒前
微笑沛文发布了新的文献求助10
9秒前
壮观的乐荷完成签到,获得积分10
10秒前
Orange应助清风徐来采纳,获得10
10秒前
11秒前
友好驳发布了新的文献求助10
11秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707