Interpretable prediction of mortality in liver transplant recipients based on machine learning

人工智能 机器学习 计算机科学
作者
Xiao Zhang,Ricard Gavaldà,Jaume Baixeries
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106188-106188 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.106188
摘要

Accurate prediction of the mortality of post-liver transplantation is an important but challenging task. It relates to optimizing organ allocation and estimating the risk of possible dysfunction. Existing risk scoring models, such as the Balance of Risk (BAR) score and the Survival Outcomes Following Liver Transplantation (SOFT) score, do not predict the mortality of post-liver transplantation with sufficient accuracy. In this study, we evaluate the performance of machine learning models and establish an explainable machine learning model for predicting mortality in liver transplant recipients.The optimal feature set for the prediction of the mortality was selected by a wrapper method based on binary particle swarm optimization (BPSO). With the selected optimal feature set, seven machine learning models were applied to predict mortality over different time windows. The best-performing model was used to predict mortality through a comprehensive comparison and evaluation. An interpretable approach based on machine learning and SHapley Additive exPlanations (SHAP) is used to explicitly explain the model's decision and make new discoveries.With regard to predictive power, our results demonstrated that the feature set selected by BPSO outperformed both the feature set in the existing risk score model (BAR score, SOFT score) and the feature set processed by principal component analysis (PCA). The best-performing model, extreme gradient boosting (XGBoost), was found to improve the Area Under a Curve (AUC) values for mortality prediction by 6.7%, 11.6%, and 17.4% at 3 months, 3 years, and 10 years, respectively, compared to the SOFT score. The main predictors of mortality and their impact were discussed for different age groups and different follow-up periods.Our analysis demonstrates that XGBoost can be an ideal method to assess the mortality risk in liver transplantation. In combination with the SHAP approach, the proposed framework provides a more intuitive and comprehensive interpretation of the predictive model, thereby allowing the clinician to better understand the decision-making process of the model and the impact of factors associated with mortality risk in liver transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
Owen应助万物更始采纳,获得10
刚刚
lwg完成签到,获得积分10
1秒前
辉辉028发布了新的文献求助10
1秒前
维尼完成签到,获得积分10
1秒前
2秒前
Book思议发布了新的文献求助20
2秒前
芥丶子完成签到,获得积分10
2秒前
youngx完成签到,获得积分10
2秒前
3秒前
羊羊羊完成签到,获得积分20
3秒前
scscsd完成签到,获得积分10
3秒前
jason发布了新的文献求助10
4秒前
对啊发布了新的文献求助10
4秒前
4秒前
4秒前
Apr9810h完成签到 ,获得积分10
4秒前
5秒前
科研通AI2S应助尛瞐慶成采纳,获得10
5秒前
纯真硬币发布了新的文献求助10
5秒前
李爱国应助小龙采纳,获得10
6秒前
6秒前
大模型应助滕达采纳,获得10
7秒前
7秒前
光亮的太阳完成签到,获得积分10
7秒前
8秒前
酷炫小伙完成签到,获得积分10
8秒前
Akim应助zcz采纳,获得10
8秒前
8秒前
上官若男应助Shandongdaxiu采纳,获得10
9秒前
调研昵称发布了新的文献求助10
9秒前
cc应助图图搞科研采纳,获得10
9秒前
xsx完成签到,获得积分10
10秒前
慕青应助对啊采纳,获得10
10秒前
wanci应助开放的巨人采纳,获得30
10秒前
lucyliu发布了新的文献求助20
10秒前
wait发布了新的文献求助10
11秒前
优美芷蝶完成签到,获得积分10
11秒前
Lvy完成签到,获得积分10
11秒前
呵呵哒完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384