清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Interpretable prediction of mortality in liver transplant recipients based on machine learning

人工智能 机器学习 计算机科学
作者
Xiao Zhang,Ricard Gavaldà,Jaume Baixeries
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106188-106188 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.106188
摘要

Accurate prediction of the mortality of post-liver transplantation is an important but challenging task. It relates to optimizing organ allocation and estimating the risk of possible dysfunction. Existing risk scoring models, such as the Balance of Risk (BAR) score and the Survival Outcomes Following Liver Transplantation (SOFT) score, do not predict the mortality of post-liver transplantation with sufficient accuracy. In this study, we evaluate the performance of machine learning models and establish an explainable machine learning model for predicting mortality in liver transplant recipients.The optimal feature set for the prediction of the mortality was selected by a wrapper method based on binary particle swarm optimization (BPSO). With the selected optimal feature set, seven machine learning models were applied to predict mortality over different time windows. The best-performing model was used to predict mortality through a comprehensive comparison and evaluation. An interpretable approach based on machine learning and SHapley Additive exPlanations (SHAP) is used to explicitly explain the model's decision and make new discoveries.With regard to predictive power, our results demonstrated that the feature set selected by BPSO outperformed both the feature set in the existing risk score model (BAR score, SOFT score) and the feature set processed by principal component analysis (PCA). The best-performing model, extreme gradient boosting (XGBoost), was found to improve the Area Under a Curve (AUC) values for mortality prediction by 6.7%, 11.6%, and 17.4% at 3 months, 3 years, and 10 years, respectively, compared to the SOFT score. The main predictors of mortality and their impact were discussed for different age groups and different follow-up periods.Our analysis demonstrates that XGBoost can be an ideal method to assess the mortality risk in liver transplantation. In combination with the SHAP approach, the proposed framework provides a more intuitive and comprehensive interpretation of the predictive model, thereby allowing the clinician to better understand the decision-making process of the model and the impact of factors associated with mortality risk in liver transplantation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
21秒前
名侦探柯基完成签到 ,获得积分10
22秒前
souther完成签到,获得积分0
31秒前
32秒前
43秒前
1分钟前
Ava应助Dash采纳,获得10
1分钟前
Lucas应助Dash采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
白柏233完成签到,获得积分10
2分钟前
完美世界应助凡凡采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI5应助null采纳,获得10
3分钟前
慕青应助MSl采纳,获得10
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
柒柒球完成签到 ,获得积分10
4分钟前
allrubbish完成签到,获得积分10
4分钟前
哈扎尔发布了新的文献求助10
4分钟前
5分钟前
5分钟前
mmmmmmgm完成签到 ,获得积分10
5分钟前
5分钟前
苹果完成签到 ,获得积分10
6分钟前
刘玲完成签到 ,获得积分10
6分钟前
6分钟前
儒雅的山河完成签到 ,获得积分10
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
jerry完成签到 ,获得积分10
6分钟前
通科研完成签到 ,获得积分0
7分钟前
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4541217
求助须知:如何正确求助?哪些是违规求助? 3974881
关于积分的说明 12310977
捐赠科研通 3642163
什么是DOI,文献DOI怎么找? 2005731
邀请新用户注册赠送积分活动 1041137
科研通“疑难数据库(出版商)”最低求助积分说明 930365