Coarse-to-Fine Contrastive Self-Supervised Feature Learning for Land-Cover Classification in SAR Images With Limited Labeled Data

人工智能 模式识别(心理学) 计算机科学 特征(语言学) 嵌入 像素 特征向量 约束(计算机辅助设计) 上下文图像分类 图像(数学) 数学 几何学 语言学 哲学
作者
Meijuan Yang,Licheng Jiao,Fang Liu,Biao Hou,Shuyuan Yang,Yake Zhang,Jianlong Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 6502-6516 被引量:1
标识
DOI:10.1109/tip.2022.3211472
摘要

Contrastive self-supervised learning (CSSL) has achieved promising results in extracting visual features from unlabeled data. Most of the current CSSL methods are used to learn global image features with low-resolution that are not suitable or efficient for pixel-level tasks. In this paper, we propose a coarse-to-fine CSSL framework based on a novel contrasting strategy to address this problem. It consists of two stages, one for encoder pre-training to learn global features and the other for decoder pre-training to derive local features. Firstly, the novel contrasting strategy takes advantage of the spatial structure and semantic meaning of different regions and provides more cues to learn than that relying only on data augmentation. Specifically, a positive pair is built from two nearby patches sampled along the direction of the texture if they fall into the same cluster. A negative pair is generated from different clusters. When the novel contrasting strategy is applied to the coarse-to-fine CSSL framework, global and local features are learned successively by forcing the positive pair close to each other and the negative pair apart in an embedding space. Secondly, a discriminant constraint is incorporated into the per-pixel classification model to maximize the inter-class distance. It makes the classification model more competent at distinguishing between different categories that have similar appearance. Finally, the proposed method is validated on four SAR images for land-cover classification with limited labeled data and substantially improves the experimental results. The effectiveness of the proposed method is demonstrated in pixel-level tasks after comparison with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
炙热冰夏发布了新的文献求助10
2秒前
2秒前
ANANAN应助Shadi采纳,获得30
5秒前
炙热冰夏完成签到,获得积分10
6秒前
斯文败类应助无限雪巧采纳,获得10
6秒前
天天快乐应助整齐新儿采纳,获得10
6秒前
siwen发布了新的文献求助10
6秒前
8秒前
忧虑的白凡完成签到,获得积分10
9秒前
11秒前
12秒前
13秒前
大佬发布了新的文献求助10
15秒前
vvv发布了新的文献求助10
15秒前
16秒前
羽毛发布了新的文献求助10
16秒前
含蓄千凝发布了新的文献求助30
16秒前
18秒前
笨蛋没烦恼完成签到 ,获得积分10
19秒前
天亮了发布了新的文献求助10
22秒前
尛破孩完成签到,获得积分10
22秒前
橘络发布了新的文献求助10
23秒前
xiaoyu完成签到,获得积分10
25秒前
27秒前
zhendou完成签到,获得积分10
28秒前
29秒前
Return应助专注寻菱采纳,获得10
29秒前
上官若男应助VDC采纳,获得30
29秒前
1953发布了新的文献求助10
30秒前
无奈的平文完成签到,获得积分10
30秒前
keep完成签到 ,获得积分10
31秒前
Mea发布了新的文献求助30
33秒前
33秒前
SYLH应助vvv采纳,获得10
34秒前
MIRROR发布了新的文献求助10
34秒前
水上书完成签到,获得积分10
35秒前
李爱国应助电磁波采纳,获得10
38秒前
英俊的铭应助娃哈哈采纳,获得10
39秒前
可爱的函函应助求知的周采纳,获得10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589