环氧树脂
介电谱
腐蚀
涂层
表面改性
材料科学
X射线光电子能谱
傅里叶变换红外光谱
纳米复合材料
扫描电子显微镜
化学工程
电解质
复合材料
核化学
电化学
化学
物理化学
工程类
电极
作者
Majid Mirzaee,Abdolvahab Seif,Alimorad Rashidi,Pier Luigi Silvestrelli,Ziyang Zhou,Sepideh Pourhashem,Jizhou Duan,Maryam Sirati Gohari
标识
DOI:10.1016/j.jece.2022.108746
摘要
In this work, two-dimensional hexagonal boron carbonitride nanosheets co-functionalized with polydopamine (PDA) and 3-aminopropyltriethoxysilane (KH550) (abbreviated as Fh-BCNNS) are introduced as nanofillers for promoting the fouling and physical barrier resistance of solvent-based epoxy coatings. The material characterization conducted with X-ray techniques of photoelectron spectroscopy and diffraction as well as Brunauer–Emmett–Teller confirm that the synthesized h-BCNNS has 353 m 2 /g specific surface area with microporous structure, while field emission scanning electron microscopy and Fourier transform infrared spectroscopy indicate that the co-functionalization is successfully achieved. After dispersing the Fh-BCNNS in the epoxy matrix at 0.3, 0.6, and 1.0 wt. % followed by mixing with the curing agent, the coating is applied by a spray method on the steel surface. The data derived by electrochemical impedance spectroscopy show that the optimum corrosion resistant properties is achieved by loading 0.6 wt. % Fh-BCNNS, and the coating resistance of the optimized nanocomposite is 3.7×10 7 and 2.85×10 6 Ω.cm 2 after immersion in the corrosive electrolyte of 3.5 wt. % NaCl aqueous solution for 1 day and 28 days, respectively. Furthermore, density functional theory (DFT) alongside the experimental investigations proves the mechanisms involved in corrosion protection properties through considering interactions and electronic properties. For EP/Fh-BCNNS@F-ZnO nanohybrid, the value of Z f =0.01 Hz of EP/Fh-BCNNS@F-ZnO hybrids after 1 day and 4 weeks of immersion, are 9×10 7 and 3.3×10 7 Ω.cm 2 which are two order of magnitude higher than EP/Fh-BCNNS. According to anti-fouling results, the growth rate of algae is less than 10% for the EP/Fh-BCNNS@F-ZnO sample and between 30% and 60% for the control sample (EP/Fh-BCNNS at 0.6 wt. %) after 28 days of immersion. • The two-dimensional h-BCNNS are synthesized using inexpensive precursors. • Functionalizing h-BCNNS with the contribution of PDA and APTES • EP/Fh-BCNNS coatings at 0.6% wt. exhibited good corrosion resistance. • The anti-fouling properties of EP/Fh-BCNNS @F-ZnO composites were improved. • The salient effects of the PDA and APTES anchored on h-BCNNS, resulting from DFT.
科研通智能强力驱动
Strongly Powered by AbleSci AI