Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface

计算机科学 学习迁移 脑-机接口 卷积神经网络 分类器(UML) 人工智能 脑电图 模式识别(心理学) 深度学习 机器学习 心理学 精神科
作者
Arunabha M. Roy
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:116: 105347-105347 被引量:93
标识
DOI:10.1016/j.engappai.2022.105347
摘要

Deep learning (DL)-based brain–computer interface (BCI) in motor imagery (MI) has emerged as a powerful method for establishing direct communication between the brain and external electronic devices. However, due to inter-subject variability, inherent complex properties, and low signal-to-noise ratio (SNR) in electroencephalogram (EEG) signals are major challenges that significantly hinder the accuracy of the MI classifier. To overcome this, the present work proposes an efficient transfer learning (TL)-based multi-scale feature fused CNN (MSFFCNN) which can capture the distinguishable features of various non-overlapping canonical frequency bands of EEG signals from different convolutional scales for multi-class MI classification. In order to account for inter-subject variability from different subjects, the current work presents 4 different model variants including subject-independent and subject-adaptive classification models considering different adaptation configurations to exploit the full learning capacity of the classifier. Each adaptation configuration has been fine-tuned in an extensively trained pre-trained model and the performance of the classifier has been studied for a vast range of learning rates and degrees of adaptation which illustrates the advantages of using an adaptive transfer learning-based model. The model achieves an average classification accuracy of 94.06% (±0.70%) and the kappa value of 0.88 outperforming several baseline and current state-of-the-art EEG-based MI classification models with fewer training samples. The present research provides an effective and efficient transfer learning-based end-to-end MI classification framework for designing a high-performance robust MI-BCI system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助patent采纳,获得30
1秒前
wks666666完成签到,获得积分10
2秒前
Apricity完成签到,获得积分10
2秒前
chole发布了新的文献求助30
6秒前
上官若男应助快乐的伟诚采纳,获得10
7秒前
9秒前
田様应助666采纳,获得10
12秒前
随遇而安完成签到 ,获得积分10
14秒前
科研通AI5应助Apricity采纳,获得10
14秒前
Russell发布了新的文献求助10
15秒前
15秒前
甜甜谷波完成签到 ,获得积分10
15秒前
15秒前
苗条的柏柳完成签到,获得积分20
15秒前
潘2333完成签到,获得积分20
17秒前
首席医官完成签到,获得积分10
18秒前
心灵美无剑完成签到,获得积分20
19秒前
乙酰水杨酸完成签到 ,获得积分10
19秒前
19秒前
21秒前
夏青荷完成签到,获得积分10
21秒前
22秒前
22秒前
852应助宠仙采纳,获得10
23秒前
23秒前
美好青旋关注了科研通微信公众号
24秒前
666发布了新的文献求助10
25秒前
27秒前
俊逸鹏笑完成签到,获得积分10
27秒前
海阔光明发布了新的文献求助30
28秒前
chole完成签到,获得积分10
28秒前
麦田里的守望者完成签到,获得积分10
35秒前
35秒前
greenPASS666完成签到,获得积分10
35秒前
nanbei发布了新的文献求助10
36秒前
vivia完成签到,获得积分10
36秒前
37秒前
汉堡包应助谨慎的夏采纳,获得10
38秒前
CeciliaLee发布了新的文献求助10
38秒前
在水一方应助甜筒超好吃采纳,获得10
39秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Social Theory and Language The Construction of Meaning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701428
求助须知:如何正确求助?哪些是违规求助? 3251690
关于积分的说明 9875720
捐赠科研通 2963647
什么是DOI,文献DOI怎么找? 1625191
邀请新用户注册赠送积分活动 769908
科研通“疑难数据库(出版商)”最低求助积分说明 742593