催化作用
材料科学
甲醛
路径(计算)
化学工程
化学
无机化学
纳米技术
有机化学
计算机科学
工程类
程序设计语言
作者
Rong Li,Xianjin Shi,Yu Huang,Meijuan Chen,Dandan Zhu,Wingkei Ho,Junji Cao,Shuncheng Lee
标识
DOI:10.1016/j.apcatb.2022.121902
摘要
This research precisely controlled the thickness of Co 3 O 4 nanosheets to investigate the effect of active sites exposure on the reaction path of HCHO catalytic oxidation. X-ray absorption fine structure demonstrates that ultrathin Co 3 O 4 nanosheets (Co 3 O 4 -2) with atomic layer thickness (~2 nm) exhibit stronger lattice disorder than Co 3 O 4 nanosheets with a thickness of 20 nm (Co 3 O 4 -20). Aberration-corrected scanning transmission electron microscopy confirms that two-dimensional structure and disordered structure of Co 3 O 4 -2 enhances the surface exposure of active sites (Co 3+ and oxygen vacancies). Therefore, Co 3 O 4 -2 can produce more reactive oxygen species, avoiding the side reaction path dominated by undesired intermediates over Co 3 O 4 -20, where active sites are blocked and HCHO oxidation is inhibited. Consequently, the HCHO removal efficiency (>90%) and CO 2 conversion efficiency (>90%) of Co 3 O 4 -2 are substantially higher than thicker Co 3 O 4 nanosheets. This research provides an effective strategy to construct active sites and deep insights into the reaction path. • Ultra-thin Co 3 O 4 nanosheets achieved catalytic oxidation of HCHO at room temperature. • The thickness of Co 3 O 4 nanosheets is precisely controlled. • Enhanced active sites exposure was studied from the atomic scale. • Abundant active sites of ultra-thin Co 3 O 4 nanosheets eliminate side reaction paths.
科研通智能强力驱动
Strongly Powered by AbleSci AI