控制理论(社会学)
终端滑动模式
弹道
控制器(灌溉)
执行机构
跟踪(教育)
断层(地质)
人工神经网络
容错
计算机科学
滑模控制
控制工程
工程类
控制(管理)
非线性系统
人工智能
心理学
教育学
分布式计算
物理
量子力学
天文
地震学
农学
生物
地质学
作者
Jiayu Dong,Meijiao Zhao,Zhao Li,Min Cheng
标识
DOI:10.1177/01423312221115491
摘要
In this paper, a novel finite-time fault-tolerant trajectory tracking controller is created to render a marine vehicle to enhance tracking performance in the presence of complex unknown variables, including model uncertainties, environmental disturbances, and actuator faults. An adaptive fault-tolerant finite-time sliding mode controller is designed by introducing adaptive control techniques, the non-singular fast terminal sliding mode (NSFTSM) function, and a radial base function (RBF) neural network. The radial base function neural network (RBFNN) is developed to eliminate the influences of model uncertainties and environmental disturbances. A fault compensation by integrating the adaption technique is designed to reduce the effects of actuator faults and approximation errors. Suffering from uncertainties and actuator faults, the proposed finite-time tracking controller can track the desired trajectory with high precision. Simulation results and compared simulations indicate the efficiency and superiority of the proposed controller.
科研通智能强力驱动
Strongly Powered by AbleSci AI