Research on peak prediction of urban differentiated carbon emissions -- a case study of Shandong Province, China

中国 温室气体 碳纤维 环境科学 山脊 环境工程 地理 数学 地图学 算法 生态学 生物 复合数 考古
作者
Suqing Tian,Yang Xu,Qingsong Wang,Yujie Zhang,Xueliang Yuan,Qiao Ma,Leping Chen,Haichao Ma,Jixiang Liu,Chengqing Liu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:374: 134050-134050 被引量:16
标识
DOI:10.1016/j.jclepro.2022.134050
摘要

Cities are the main source and gathering place of carbon emissions. Therefore, it is an effective way to reach peak CO2 emissions before 2030 to make carbon emission prediction and implement differentiated carbon emission reduction schemes according to local conditions at the urban level. Taking Shandong Province as an example, this paper comprehensively explored the impact of 16 socio-economic factors on carbon emissions of different cities through the extended STIRPAT model. In order to reduce the uncertainty of the research results and achieve “one city, one policy”, firstly, the influencing factors of carbon emissions in different cities were screened through ridge regression equation, which were used as specific parameters of different cities in the scenario setting. Secondly, based on the actual development of different cities, this paper obtained the scenario combination scheme by freely combining different influencing factors to predict the peak time and peak value of carbon emissions. Based on the above measures, it could not only reflect the heterogeneous development of cities, but also ensure that the research results are close to the actual development of cities. The results show that 16 cities in Shandong Province show differential peak attainment. Among them, 8 cities have the best peak year around 2025, 5 cities have the best peak year around 2028, and 2 cities can achieve the peak before 2030. A comprehensive analysis of the timing and peaking of carbon emissions suggests that the best overall peaking year for Shandong Province could be 2028. In addition, according to the different influencing factors of carbon emission peak in each city, a set of carbon emission reduction scenarios with urban differentiation reaching the peak is proposed. This could provide a more comprehensive path choice direction for local governments to formulate carbon emission reduction action plans. Furthermore, this paper could be used as a reference for other provinces in China or other national regions to explore urban differentiated carbon peaking and to formulate operable carbon peaking solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷炫的安雁完成签到 ,获得积分10
1秒前
达芙发布了新的文献求助10
3秒前
小李完成签到,获得积分10
8秒前
达芙完成签到,获得积分10
14秒前
16秒前
露露发布了新的文献求助10
21秒前
ww完成签到 ,获得积分10
25秒前
科研通AI6.1应助YanJinyu采纳,获得10
25秒前
谷贝贝完成签到,获得积分10
38秒前
XNt完成签到 ,获得积分10
45秒前
凑个数完成签到 ,获得积分10
49秒前
海皇星空完成签到 ,获得积分10
50秒前
liusoojoo完成签到,获得积分10
56秒前
56秒前
59秒前
59秒前
1分钟前
1分钟前
小小美发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
蓝天应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
蓝天应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
月下荷花完成签到 ,获得积分10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
charint应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
SPARK应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851979
求助须知:如何正确求助?哪些是违规求助? 6275055
关于积分的说明 15627539
捐赠科研通 4967924
什么是DOI,文献DOI怎么找? 2678842
邀请新用户注册赠送积分活动 1623057
关于科研通互助平台的介绍 1579488