已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Co-Communication Graph Convolutional Network for Multi-View Crowd Counting

计算机科学 图形 理论计算机科学 人工智能 机器学习
作者
Qiang Zhai,Fan Yang,Xin Li,Guo-Sen Xie,Hong Cheng,Zicheng Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5813-5825 被引量:4
标识
DOI:10.1109/tmm.2022.3199555
摘要

We study and address the multi-view crowd counting (MVCC) problem which poses more realistic challenges than single-view crowd counting for better facilitating crowd management/public safety systems. Its major challenge lies in how to fully distill and aggregate useful, complementary information among multiple camera views to create powerful ground-plane representations for wide-area crowd analysis. In this paper, we present a graph-based, multi-view learning model called Co-Communication Graph Convolutional Network (CoCo-GCN) to jointly investigate intra-view contextual dependencies and inter-view complementary relations. More specifically, CoCo-GCN builds a view-agnostic graph interaction space for each camera view to conduct efficient contextual reasoning, and extends the intra-view reasoning by using a novel Graph Communication Layer (GCL) to also take between-graph (cross-view), complementary information into account. Moreover, CoCo-GCN uses a new Co-Memory Layer (CoML) to jointly coarsen the graphs and close the ‘representational gap’ among them for further exploiting the compositional nature of graphs and learning more consistent representations. Finally, these jointly learned features of multiple views can be easily fused to create ground-plane representations for wide-area crowd counting. Experiments show that the proposed CoCo-GCN achieves state-of-the-art results on three MVCC datasets, i.e., PETS2009, DukeMTMC, and City Street, significantly improving the scene-level accuracy over previous models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
麻瓜X完成签到,获得积分10
3秒前
3秒前
晓晓鹤发布了新的文献求助10
5秒前
5秒前
Jasper应助Laputa采纳,获得30
5秒前
Liz发布了新的文献求助10
6秒前
NexusExplorer应助笨鸟先飞采纳,获得10
6秒前
哈哈哈发布了新的文献求助10
7秒前
CipherSage应助裂头蚴采纳,获得10
7秒前
小秃子完成签到,获得积分10
9秒前
10秒前
11秒前
13秒前
wangai1011应助Tracy采纳,获得10
16秒前
雨相所至发布了新的文献求助10
16秒前
上好佳完成签到,获得积分10
18秒前
NattyPoe发布了新的文献求助10
18秒前
20秒前
xiaofeiyan发布了新的文献求助10
26秒前
JiegeSCI完成签到,获得积分10
26秒前
32秒前
夕夕成玦完成签到 ,获得积分10
32秒前
orixero应助啵啵小柚子采纳,获得10
33秒前
尹宝发布了新的文献求助10
36秒前
黄昏完成签到,获得积分10
36秒前
37秒前
37秒前
37秒前
英姑应助TTTYL采纳,获得30
38秒前
nanwan完成签到,获得积分10
38秒前
39秒前
40秒前
CodeCraft应助PanLi采纳,获得10
40秒前
40秒前
messi0731发布了新的文献求助10
41秒前
zhzhzh发布了新的文献求助10
42秒前
YTL2021完成签到,获得积分10
43秒前
tttt完成签到 ,获得积分10
43秒前
头上有犄角bb完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702