Co-Communication Graph Convolutional Network for Multi-View Crowd Counting

计算机科学 图形 理论计算机科学 人工智能 机器学习
作者
Qiang Zhai,Fan Yang,Xin Li,Guo-Sen Xie,Hong Cheng,Zicheng Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5813-5825 被引量:4
标识
DOI:10.1109/tmm.2022.3199555
摘要

We study and address the multi-view crowd counting (MVCC) problem which poses more realistic challenges than single-view crowd counting for better facilitating crowd management/public safety systems. Its major challenge lies in how to fully distill and aggregate useful, complementary information among multiple camera views to create powerful ground-plane representations for wide-area crowd analysis. In this paper, we present a graph-based, multi-view learning model called Co-Communication Graph Convolutional Network (CoCo-GCN) to jointly investigate intra-view contextual dependencies and inter-view complementary relations. More specifically, CoCo-GCN builds a view-agnostic graph interaction space for each camera view to conduct efficient contextual reasoning, and extends the intra-view reasoning by using a novel Graph Communication Layer (GCL) to also take between-graph (cross-view), complementary information into account. Moreover, CoCo-GCN uses a new Co-Memory Layer (CoML) to jointly coarsen the graphs and close the ‘representational gap’ among them for further exploiting the compositional nature of graphs and learning more consistent representations. Finally, these jointly learned features of multiple views can be easily fused to create ground-plane representations for wide-area crowd counting. Experiments show that the proposed CoCo-GCN achieves state-of-the-art results on three MVCC datasets, i.e., PETS2009, DukeMTMC, and City Street, significantly improving the scene-level accuracy over previous models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾梦完成签到,获得积分10
1秒前
仇悦完成签到,获得积分10
1秒前
2秒前
TT完成签到,获得积分10
2秒前
李若伊完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
ding应助淡定采波采纳,获得10
4秒前
4秒前
yiheng完成签到,获得积分10
4秒前
蔬菜狗狗完成签到,获得积分10
4秒前
Daaz完成签到,获得积分10
4秒前
应俊完成签到 ,获得积分10
5秒前
小土豆完成签到,获得积分10
5秒前
Hlinc完成签到,获得积分20
5秒前
5秒前
打打应助shadow采纳,获得10
6秒前
PEI完成签到,获得积分10
6秒前
6秒前
6秒前
Auriga完成签到,获得积分10
6秒前
FashionBoy应助may采纳,获得30
7秒前
日暖月寒完成签到,获得积分10
7秒前
躺平不摆烂完成签到,获得积分10
7秒前
8秒前
WY-zicaitang完成签到,获得积分10
8秒前
8秒前
zyw完成签到,获得积分10
8秒前
事上炼完成签到,获得积分10
8秒前
眯眯眼的谷冬完成签到 ,获得积分10
9秒前
9秒前
Rui完成签到 ,获得积分20
9秒前
小黑Robot发布了新的文献求助30
9秒前
9秒前
优美寒荷完成签到,获得积分10
10秒前
小王小王完成签到,获得积分10
10秒前
ZOEY完成签到,获得积分10
10秒前
不安青牛发布了新的文献求助10
10秒前
森海完成签到,获得积分10
10秒前
落后的道之完成签到,获得积分10
10秒前
louise发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654