已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Co-Communication Graph Convolutional Network for Multi-View Crowd Counting

计算机科学 图形 理论计算机科学 人工智能 机器学习
作者
Qiang Zhai,Fan Yang,Xin Li,Guo-Sen Xie,Hong Cheng,Zicheng Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5813-5825 被引量:4
标识
DOI:10.1109/tmm.2022.3199555
摘要

We study and address the multi-view crowd counting (MVCC) problem which poses more realistic challenges than single-view crowd counting for better facilitating crowd management/public safety systems. Its major challenge lies in how to fully distill and aggregate useful, complementary information among multiple camera views to create powerful ground-plane representations for wide-area crowd analysis. In this paper, we present a graph-based, multi-view learning model called Co-Communication Graph Convolutional Network (CoCo-GCN) to jointly investigate intra-view contextual dependencies and inter-view complementary relations. More specifically, CoCo-GCN builds a view-agnostic graph interaction space for each camera view to conduct efficient contextual reasoning, and extends the intra-view reasoning by using a novel Graph Communication Layer (GCL) to also take between-graph (cross-view), complementary information into account. Moreover, CoCo-GCN uses a new Co-Memory Layer (CoML) to jointly coarsen the graphs and close the ‘representational gap’ among them for further exploiting the compositional nature of graphs and learning more consistent representations. Finally, these jointly learned features of multiple views can be easily fused to create ground-plane representations for wide-area crowd counting. Experiments show that the proposed CoCo-GCN achieves state-of-the-art results on three MVCC datasets, i.e., PETS2009, DukeMTMC, and City Street, significantly improving the scene-level accuracy over previous models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豪的洋葱完成签到,获得积分10
刚刚
NexusExplorer应助潘嘉慧采纳,获得10
2秒前
3秒前
zy发布了新的文献求助20
3秒前
FashionBoy应助刘海清采纳,获得10
3秒前
3秒前
老迟到的信封完成签到,获得积分10
4秒前
Lululu完成签到,获得积分10
5秒前
清风朗月完成签到,获得积分10
6秒前
Jenny712发布了新的文献求助10
7秒前
跳跃毒娘完成签到,获得积分10
9秒前
9秒前
跳跃毒娘发布了新的文献求助10
12秒前
无心的土豆完成签到,获得积分10
12秒前
13秒前
潘嘉慧发布了新的文献求助10
18秒前
20秒前
两棵树完成签到,获得积分10
20秒前
21秒前
高山流水完成签到 ,获得积分10
23秒前
24秒前
butterfly发布了新的文献求助10
27秒前
义气的胡完成签到 ,获得积分10
27秒前
28秒前
李爱国应助夜行采纳,获得10
33秒前
六五完成签到 ,获得积分10
33秒前
bkagyin应助典雅的俊驰采纳,获得10
34秒前
亦hcy发布了新的文献求助10
34秒前
enen完成签到 ,获得积分10
37秒前
39秒前
隐形便当完成签到 ,获得积分10
42秒前
张志超完成签到,获得积分10
43秒前
43秒前
butterfly完成签到,获得积分10
45秒前
星空剪影发布了新的文献求助10
48秒前
共享精神应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
Wang应助科研通管家采纳,获得10
52秒前
August完成签到,获得积分10
56秒前
小二郎应助陶逸豪采纳,获得10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356373
求助须知:如何正确求助?哪些是违规求助? 4488177
关于积分的说明 13971732
捐赠科研通 4389001
什么是DOI,文献DOI怎么找? 2411329
邀请新用户注册赠送积分活动 1403907
关于科研通互助平台的介绍 1377741