Co-Communication Graph Convolutional Network for Multi-View Crowd Counting

计算机科学 图形 理论计算机科学 人工智能 机器学习
作者
Qiang Zhai,Fan Yang,Xin Li,Guo-Sen Xie,Hong Cheng,Zicheng Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5813-5825 被引量:4
标识
DOI:10.1109/tmm.2022.3199555
摘要

We study and address the multi-view crowd counting (MVCC) problem which poses more realistic challenges than single-view crowd counting for better facilitating crowd management/public safety systems. Its major challenge lies in how to fully distill and aggregate useful, complementary information among multiple camera views to create powerful ground-plane representations for wide-area crowd analysis. In this paper, we present a graph-based, multi-view learning model called Co-Communication Graph Convolutional Network (CoCo-GCN) to jointly investigate intra-view contextual dependencies and inter-view complementary relations. More specifically, CoCo-GCN builds a view-agnostic graph interaction space for each camera view to conduct efficient contextual reasoning, and extends the intra-view reasoning by using a novel Graph Communication Layer (GCL) to also take between-graph (cross-view), complementary information into account. Moreover, CoCo-GCN uses a new Co-Memory Layer (CoML) to jointly coarsen the graphs and close the ‘representational gap’ among them for further exploiting the compositional nature of graphs and learning more consistent representations. Finally, these jointly learned features of multiple views can be easily fused to create ground-plane representations for wide-area crowd counting. Experiments show that the proposed CoCo-GCN achieves state-of-the-art results on three MVCC datasets, i.e., PETS2009, DukeMTMC, and City Street, significantly improving the scene-level accuracy over previous models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好师完成签到,获得积分10
刚刚
Starvotary发布了新的文献求助10
1秒前
1秒前
1秒前
雪碧没气完成签到,获得积分10
1秒前
金开完成签到,获得积分10
1秒前
观察者完成签到,获得积分10
1秒前
1秒前
晴朗完成签到 ,获得积分10
1秒前
聪慧的凝海完成签到 ,获得积分10
1秒前
RJ应助云书采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
Esther完成签到,获得积分10
2秒前
青阳完成签到,获得积分10
2秒前
2秒前
传奇3应助赵筱采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
可可发布了新的文献求助10
3秒前
慕青应助叶95采纳,获得10
4秒前
Linxinxin完成签到,获得积分10
4秒前
胖馨馨完成签到,获得积分10
4秒前
ding应助肥波爱吃鱼采纳,获得10
4秒前
Jane完成签到,获得积分10
4秒前
明理伯云完成签到,获得积分10
4秒前
Jackie完成签到 ,获得积分10
4秒前
4秒前
5秒前
重要问旋完成签到,获得积分10
5秒前
有点颓废的梦梦徐完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
好奇的书蛋完成签到,获得积分10
6秒前
mango发布了新的文献求助10
6秒前
6秒前
yy完成签到,获得积分10
6秒前
核桃完成签到,获得积分10
7秒前
深情冷雪发布了新的文献求助10
8秒前
lsz完成签到,获得积分10
9秒前
mal龙完成签到,获得积分10
9秒前
欢喜大白菜真实的钥匙完成签到 ,获得积分10
9秒前
半晴发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658821
求助须知:如何正确求助?哪些是违规求助? 4824516
关于积分的说明 15083291
捐赠科研通 4817352
什么是DOI,文献DOI怎么找? 2578137
邀请新用户注册赠送积分活动 1532856
关于科研通互助平台的介绍 1491634