Co-Communication Graph Convolutional Network for Multi-View Crowd Counting

计算机科学 图形 理论计算机科学 人工智能 机器学习
作者
Qiang Zhai,Fan Yang,Xin Li,Guo-Sen Xie,Hong Cheng,Zicheng Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5813-5825 被引量:4
标识
DOI:10.1109/tmm.2022.3199555
摘要

We study and address the multi-view crowd counting (MVCC) problem which poses more realistic challenges than single-view crowd counting for better facilitating crowd management/public safety systems. Its major challenge lies in how to fully distill and aggregate useful, complementary information among multiple camera views to create powerful ground-plane representations for wide-area crowd analysis. In this paper, we present a graph-based, multi-view learning model called Co-Communication Graph Convolutional Network (CoCo-GCN) to jointly investigate intra-view contextual dependencies and inter-view complementary relations. More specifically, CoCo-GCN builds a view-agnostic graph interaction space for each camera view to conduct efficient contextual reasoning, and extends the intra-view reasoning by using a novel Graph Communication Layer (GCL) to also take between-graph (cross-view), complementary information into account. Moreover, CoCo-GCN uses a new Co-Memory Layer (CoML) to jointly coarsen the graphs and close the ‘representational gap’ among them for further exploiting the compositional nature of graphs and learning more consistent representations. Finally, these jointly learned features of multiple views can be easily fused to create ground-plane representations for wide-area crowd counting. Experiments show that the proposed CoCo-GCN achieves state-of-the-art results on three MVCC datasets, i.e., PETS2009, DukeMTMC, and City Street, significantly improving the scene-level accuracy over previous models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的奇异果完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
紫禁城的雪花完成签到,获得积分10
3秒前
Naranja完成签到,获得积分10
4秒前
坦率灵槐应助不要洋葱采纳,获得10
5秒前
6秒前
6秒前
乐乐应助黑色天使采纳,获得10
6秒前
mdjinij发布了新的文献求助10
7秒前
猪猪hero发布了新的文献求助10
7秒前
熊尼发布了新的文献求助10
8秒前
wangwangxiao完成签到 ,获得积分10
8秒前
8秒前
8秒前
Djtc发布了新的文献求助20
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
cc完成签到,获得积分10
11秒前
yidi01完成签到,获得积分10
13秒前
CipherSage应助淡淡采纳,获得10
13秒前
桐桐应助酸奶鱼采纳,获得10
14秒前
田攀发布了新的文献求助10
14秒前
wsj发布了新的文献求助10
14秒前
Cc发布了新的文献求助10
14秒前
shiiiny发布了新的文献求助10
15秒前
幽默涟妖发布了新的文献求助10
15秒前
16秒前
cc发布了新的文献求助10
17秒前
科研通AI6应助hzs采纳,获得10
17秒前
故渊丶完成签到 ,获得积分10
17秒前
Zzzzzzz发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648687
求助须知:如何正确求助?哪些是违规求助? 4775962
关于积分的说明 15044928
捐赠科研通 4807596
什么是DOI,文献DOI怎么找? 2570889
邀请新用户注册赠送积分活动 1527662
关于科研通互助平台的介绍 1486570