Co-Communication Graph Convolutional Network for Multi-View Crowd Counting

计算机科学 图形 理论计算机科学 人工智能 机器学习
作者
Qiang Zhai,Fan Yang,Xin Li,Guo-Sen Xie,Hong Cheng,Zicheng Liu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 5813-5825 被引量:4
标识
DOI:10.1109/tmm.2022.3199555
摘要

We study and address the multi-view crowd counting (MVCC) problem which poses more realistic challenges than single-view crowd counting for better facilitating crowd management/public safety systems. Its major challenge lies in how to fully distill and aggregate useful, complementary information among multiple camera views to create powerful ground-plane representations for wide-area crowd analysis. In this paper, we present a graph-based, multi-view learning model called Co-Communication Graph Convolutional Network (CoCo-GCN) to jointly investigate intra-view contextual dependencies and inter-view complementary relations. More specifically, CoCo-GCN builds a view-agnostic graph interaction space for each camera view to conduct efficient contextual reasoning, and extends the intra-view reasoning by using a novel Graph Communication Layer (GCL) to also take between-graph (cross-view), complementary information into account. Moreover, CoCo-GCN uses a new Co-Memory Layer (CoML) to jointly coarsen the graphs and close the ‘representational gap’ among them for further exploiting the compositional nature of graphs and learning more consistent representations. Finally, these jointly learned features of multiple views can be easily fused to create ground-plane representations for wide-area crowd counting. Experiments show that the proposed CoCo-GCN achieves state-of-the-art results on three MVCC datasets, i.e., PETS2009, DukeMTMC, and City Street, significantly improving the scene-level accuracy over previous models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鳗鱼灵寒完成签到,获得积分10
1秒前
1秒前
ting5260完成签到,获得积分10
2秒前
yao完成签到,获得积分10
2秒前
!!完成签到,获得积分10
2秒前
neeeru完成签到,获得积分10
2秒前
3秒前
3秒前
丘比特应助大大怪采纳,获得10
3秒前
yydsyk完成签到,获得积分10
3秒前
YixiaoWang发布了新的文献求助10
4秒前
小刷子完成签到,获得积分10
4秒前
Aom发布了新的文献求助20
5秒前
可宝想当富婆完成签到 ,获得积分10
5秒前
火星上的天思完成签到,获得积分10
5秒前
5秒前
LIN完成签到,获得积分10
5秒前
JamesPei应助缓慢易云采纳,获得10
6秒前
CodeCraft应助Laraine采纳,获得10
7秒前
7秒前
卉酱完成签到,获得积分10
7秒前
Kate完成签到,获得积分10
7秒前
林夏发布了新的文献求助10
7秒前
小思雅发布了新的文献求助10
7秒前
ZJCGD发布了新的文献求助10
8秒前
踹脸大妈完成签到,获得积分10
8秒前
佳仪完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
Akim应助哎呀呀采纳,获得10
11秒前
sljzhangbiao11完成签到,获得积分10
12秒前
宋宋关注了科研通微信公众号
12秒前
JamesPei应助12334采纳,获得10
12秒前
12秒前
zzzzz给zzzzz的求助进行了留言
12秒前
梦在远方完成签到 ,获得积分10
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582