Dynamic interception point guidance algorithm based on particle swarm optimization

比例导航 导弹 粒子群优化 导弹制导 加速度 拦截 控制理论(社会学) 计算机科学 群体行为 非线性系统 点(几何) 工程类 数学优化 模拟 算法 控制(管理) 人工智能 航空航天工程 数学 物理 生物 经典力学 量子力学 生态学 几何学
作者
Yiwei Chen
出处
期刊:Measurement & Control [SAGE]
卷期号:55 (9-10): 983-995 被引量:1
标识
DOI:10.1177/00202940221118354
摘要

The engagement of target-interceptor is an extremely complicated and nonlinear problem. Most literatures of developed guidance algorithms are hard to work in real-time missile guidance systems because of the complicated design of controllers, restriction in specific condition or excess computing loading. In this paper, the proposed guidance algorithm computes the predicted interception point of target-interceptor and applies particle swarm optimization to optimize the lateral acceleration control commands of missile where the definition of fitness function can guide the missile toward the predicted interception point when the computed fitness value is the minimum. According to the results of simulation experiments, the proposed method has the satisfied target-kill performance to the superior aircraft with high agility. The missile can greatly revise the flight route toward the computed collision course at the initial pursuit stage and the course curve of missile is flatter than the other two guidance laws. Besides, the proposed method can reduce the occurrence of big lateral acceleration control commands acting on the missile to avoid unlocking the evasive target at the terminal stage. As a result, the proposed guidance algorithm based on particle swarm optimization is very effective without using the complicated nonlinear control methods and excess storage burden of computer. It is a simple and feasible missile guidance algorithm due to the advantages of simplicity and effectiveness just like the proportional navigation guidance law but the performance of proposed guidance algorithm is better than proportional navigation guidance law and the other guidance algorithm designed by particle swarm optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫连立果应助paleo-地质采纳,获得10
2秒前
SciGPT应助Ruiiiiii采纳,获得10
5秒前
JACk发布了新的文献求助20
5秒前
d22110652发布了新的文献求助10
5秒前
5秒前
虚幻心锁完成签到,获得积分20
6秒前
juest发布了新的文献求助10
6秒前
7秒前
CH完成签到,获得积分10
7秒前
Owen应助王彩霖采纳,获得10
9秒前
Liclever完成签到,获得积分10
10秒前
共享精神应助MOON采纳,获得10
10秒前
怡然鹭洋发布了新的文献求助10
10秒前
wzzf发布了新的文献求助10
10秒前
ding应助勤恳迎梦采纳,获得10
10秒前
Murphy_12完成签到,获得积分10
10秒前
WHEN完成签到 ,获得积分10
11秒前
mahehivebv111发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
Jalynn完成签到 ,获得积分10
12秒前
13秒前
13秒前
友好的向梦完成签到,获得积分10
13秒前
orixero应助小程同学采纳,获得10
14秒前
14秒前
隐形曼青应助壮观以松采纳,获得10
15秒前
思源应助麦当喽采纳,获得10
15秒前
juest完成签到,获得积分10
15秒前
坚强的金鱼完成签到,获得积分10
16秒前
16秒前
善学以致用应助青栀采纳,获得10
17秒前
Hey发布了新的文献求助10
17秒前
古月发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
Kevin发布了新的文献求助10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475426
求助须知:如何正确求助?哪些是违规求助? 3067424
关于积分的说明 9103837
捐赠科研通 2758776
什么是DOI,文献DOI怎么找? 1513812
邀请新用户注册赠送积分活动 699810
科研通“疑难数据库(出版商)”最低求助积分说明 699160