Dynamic interception point guidance algorithm based on particle swarm optimization

比例导航 导弹 粒子群优化 导弹制导 加速度 拦截 控制理论(社会学) 计算机科学 群体行为 非线性系统 点(几何) 工程类 数学优化 模拟 算法 控制(管理) 人工智能 航空航天工程 数学 物理 生物 经典力学 量子力学 生态学 几何学
作者
Yiwei Chen
出处
期刊:Measurement & Control [SAGE Publishing]
卷期号:55 (9-10): 983-995 被引量:2
标识
DOI:10.1177/00202940221118354
摘要

The engagement of target-interceptor is an extremely complicated and nonlinear problem. Most literatures of developed guidance algorithms are hard to work in real-time missile guidance systems because of the complicated design of controllers, restriction in specific condition or excess computing loading. In this paper, the proposed guidance algorithm computes the predicted interception point of target-interceptor and applies particle swarm optimization to optimize the lateral acceleration control commands of missile where the definition of fitness function can guide the missile toward the predicted interception point when the computed fitness value is the minimum. According to the results of simulation experiments, the proposed method has the satisfied target-kill performance to the superior aircraft with high agility. The missile can greatly revise the flight route toward the computed collision course at the initial pursuit stage and the course curve of missile is flatter than the other two guidance laws. Besides, the proposed method can reduce the occurrence of big lateral acceleration control commands acting on the missile to avoid unlocking the evasive target at the terminal stage. As a result, the proposed guidance algorithm based on particle swarm optimization is very effective without using the complicated nonlinear control methods and excess storage burden of computer. It is a simple and feasible missile guidance algorithm due to the advantages of simplicity and effectiveness just like the proportional navigation guidance law but the performance of proposed guidance algorithm is better than proportional navigation guidance law and the other guidance algorithm designed by particle swarm optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小吉利发布了新的文献求助20
1秒前
萌帆星完成签到 ,获得积分10
2秒前
2秒前
文献蚂蚁发布了新的文献求助10
3秒前
搜集达人应助热情蜗牛采纳,获得10
3秒前
CAOHOU给星辰与泪予你的求助进行了留言
4秒前
Akim应助xxxx采纳,获得10
4秒前
Akim应助qwe采纳,获得10
5秒前
LBF发布了新的文献求助10
6秒前
苹果松完成签到,获得积分10
6秒前
7秒前
7秒前
onepine完成签到,获得积分10
9秒前
chen完成签到 ,获得积分10
9秒前
9秒前
懒大王完成签到 ,获得积分10
11秒前
虫子发布了新的文献求助10
11秒前
12秒前
LBF完成签到,获得积分10
12秒前
开放灭绝发布了新的文献求助30
14秒前
Owen应助研友_LOK59L采纳,获得10
15秒前
浅是宝贝发布了新的文献求助10
15秒前
15秒前
zhoushishan完成签到,获得积分10
16秒前
何hehe发布了新的文献求助10
18秒前
19秒前
梁晓雪完成签到 ,获得积分20
20秒前
xxxx发布了新的文献求助10
20秒前
芒go完成签到,获得积分10
21秒前
文献蚂蚁发布了新的文献求助10
21秒前
21秒前
whoknowsname发布了新的文献求助10
22秒前
田様应助港岛妹妹采纳,获得10
22秒前
馆长应助港岛妹妹采纳,获得10
23秒前
爱听歌嚓茶完成签到,获得积分10
23秒前
科研通AI5应助简单酸奶采纳,获得10
24秒前
慕青应助开放灭绝采纳,获得10
25秒前
26秒前
勤恳完成签到,获得积分10
26秒前
by发布了新的文献求助30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538095
求助须知:如何正确求助?哪些是违规求助? 3972801
关于积分的说明 12306882
捐赠科研通 3639551
什么是DOI,文献DOI怎么找? 2003944
邀请新用户注册赠送积分活动 1039353
科研通“疑难数据库(出版商)”最低求助积分说明 928718