亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable machine learning model to predict rupture of small intracranial aneurysms and facilitate clinical decision

支持向量机 人工智能 机器学习 随机森林 梯度升压 Boosting(机器学习) 置信区间 神经组阅片室 Lasso(编程语言) 医学 计算机科学 神经学 内科学 精神科 万维网
作者
WeiGen Xiong,Tingting Chen,Jun Li,Xiang Lan,Cheng Zhang,Liang Xiang,Yingbin Li,Dong Chu,Yuezhang Wu,Qiong Jie,Runze Qiu,ZeYue Xu,Jianjun Zou,Hongwei Fan,Zhihong Zhao
出处
期刊:Neurological Sciences [Springer Science+Business Media]
卷期号:43 (11): 6371-6379 被引量:14
标识
DOI:10.1007/s10072-022-06351-x
摘要

Estimating whether to treat the rupture risk of small intracranial aneurysms (IAs) with size ≤ 7 mm in diameter is difficult but crucial. We aimed to construct and externally validate a convenient machine learning (ML) model for assessing the rupture risk of small IAs. One thousand four patients with small IAs recruited from two hospitals were included in our retrospective research. The patients at hospital 1 were stratified into training (70%) and internal validation set (30%) randomly, and the patients at hospital 2 were used for external validation. We selected predictive features using the least absolute shrinkage and selection operator (LASSO) method and constructed five ML models applying diverse algorithms including random forest classifier (RFC), categorical boosting (CatBoost), support vector machine (SVM) with linear kernel, light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost). The Shapley Additive Explanations (SHAP) analysis provided interpretation for the best ML model. The training, internal, and external validation cohorts included 658, 282, and 64 IAs, respectively. The best performance was presented by SVM as AUC of 0.817 in the internal [95% confidence interval (CI), 0.769-0.866] and 0.893 in the external (95% CI, 0.808-0.979) validation cohorts, which overperformed compared with the PHASES score significantly (all P < 0.001). SHAP analysis showed maximum size, location, and irregular shape were the top three important features to predict rupture. Our SVM model based on readily accessible features presented satisfying ability of discrimination in predicting the rupture IAs with small size. Morphological parameters made important contributions to prediction result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
FashionBoy应助guhuihaozi采纳,获得10
1分钟前
zzz完成签到,获得积分10
1分钟前
深情安青应助Dreamer.采纳,获得10
1分钟前
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
伏城完成签到 ,获得积分10
1分钟前
共享精神应助王大纯采纳,获得10
2分钟前
王大纯完成签到,获得积分20
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Dreamer.发布了新的文献求助10
2分钟前
汉堡包应助科研实习生采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
牛八先生完成签到,获得积分10
3分钟前
烟花应助Dreamer.采纳,获得10
3分钟前
Asura完成签到,获得积分10
3分钟前
3分钟前
RR发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
科研通AI6应助哈哈哈采纳,获得10
3分钟前
RR完成签到,获得积分10
3分钟前
3分钟前
Hodlumm发布了新的文献求助10
3分钟前
哈哈哈发布了新的文献求助10
3分钟前
3分钟前
4分钟前
无产阶级科学者完成签到,获得积分10
4分钟前
云梦完成签到,获得积分10
4分钟前
Dreamer.发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587