Interpretable machine learning model to predict rupture of small intracranial aneurysms and facilitate clinical decision

支持向量机 人工智能 机器学习 随机森林 梯度升压 Boosting(机器学习) 置信区间 神经组阅片室 Lasso(编程语言) 医学 计算机科学 神经学 内科学 精神科 万维网
作者
WeiGen Xiong,Tingting Chen,Jun Li,Xiang Lan,Cheng Zhang,Liang Xiang,Yingbin Li,Dong Chu,Yuezhang Wu,Qiong Jie,Runze Qiu,ZeYue Xu,Jianjun Zou,Hongwei Fan,Zhihong Zhao
出处
期刊:Neurological Sciences [Springer Science+Business Media]
卷期号:43 (11): 6371-6379 被引量:14
标识
DOI:10.1007/s10072-022-06351-x
摘要

Estimating whether to treat the rupture risk of small intracranial aneurysms (IAs) with size ≤ 7 mm in diameter is difficult but crucial. We aimed to construct and externally validate a convenient machine learning (ML) model for assessing the rupture risk of small IAs. One thousand four patients with small IAs recruited from two hospitals were included in our retrospective research. The patients at hospital 1 were stratified into training (70%) and internal validation set (30%) randomly, and the patients at hospital 2 were used for external validation. We selected predictive features using the least absolute shrinkage and selection operator (LASSO) method and constructed five ML models applying diverse algorithms including random forest classifier (RFC), categorical boosting (CatBoost), support vector machine (SVM) with linear kernel, light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost). The Shapley Additive Explanations (SHAP) analysis provided interpretation for the best ML model. The training, internal, and external validation cohorts included 658, 282, and 64 IAs, respectively. The best performance was presented by SVM as AUC of 0.817 in the internal [95% confidence interval (CI), 0.769-0.866] and 0.893 in the external (95% CI, 0.808-0.979) validation cohorts, which overperformed compared with the PHASES score significantly (all P < 0.001). SHAP analysis showed maximum size, location, and irregular shape were the top three important features to predict rupture. Our SVM model based on readily accessible features presented satisfying ability of discrimination in predicting the rupture IAs with small size. Morphological parameters made important contributions to prediction result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JamesPei应助shi采纳,获得10
6秒前
6秒前
6秒前
于大本事完成签到 ,获得积分10
8秒前
坚定岂愈发布了新的文献求助10
9秒前
PatrickWu发布了新的文献求助10
9秒前
12秒前
坚定岂愈完成签到,获得积分10
14秒前
英姑应助虚幻的不愁采纳,获得10
18秒前
18秒前
彭哒哒发布了新的文献求助10
24秒前
xx完成签到,获得积分10
26秒前
博士后完成签到 ,获得积分10
26秒前
小马甲应助山雀采纳,获得10
27秒前
懵懂的灭男完成签到,获得积分10
29秒前
30秒前
量子星尘发布了新的文献求助10
32秒前
35秒前
wang00wmd发布了新的文献求助20
35秒前
38秒前
tttttt完成签到,获得积分10
40秒前
谷捣猫宁完成签到,获得积分10
42秒前
在水一方应助鬼火采纳,获得10
43秒前
Mirandavia完成签到,获得积分10
44秒前
Pheonix1998完成签到,获得积分10
45秒前
47秒前
Miranda完成签到,获得积分10
48秒前
48秒前
罗中翠发布了新的文献求助10
50秒前
li完成签到 ,获得积分10
50秒前
53秒前
ZZ发布了新的文献求助10
53秒前
56秒前
按时毕业的小林完成签到,获得积分20
56秒前
Bio应助皮孤晴采纳,获得30
56秒前
滴滴哒完成签到,获得积分10
57秒前
wanci应助满眼星辰采纳,获得10
57秒前
Aoka发布了新的文献求助10
57秒前
1分钟前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167