已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interpretable machine learning model to predict rupture of small intracranial aneurysms and facilitate clinical decision

支持向量机 人工智能 机器学习 随机森林 梯度升压 Boosting(机器学习) 置信区间 神经组阅片室 Lasso(编程语言) 医学 计算机科学 神经学 内科学 精神科 万维网
作者
WeiGen Xiong,Tingting Chen,Jun Li,Xiang Lan,Cheng Zhang,Liang Xiang,Yingbin Li,Dong Chu,Yuezhang Wu,Qiong Jie,Runze Qiu,ZeYue Xu,Jianjun Zou,Hongwei Fan,Zhihong Zhao
出处
期刊:Neurological Sciences [Springer Nature]
卷期号:43 (11): 6371-6379 被引量:13
标识
DOI:10.1007/s10072-022-06351-x
摘要

Estimating whether to treat the rupture risk of small intracranial aneurysms (IAs) with size ≤ 7 mm in diameter is difficult but crucial. We aimed to construct and externally validate a convenient machine learning (ML) model for assessing the rupture risk of small IAs. One thousand four patients with small IAs recruited from two hospitals were included in our retrospective research. The patients at hospital 1 were stratified into training (70%) and internal validation set (30%) randomly, and the patients at hospital 2 were used for external validation. We selected predictive features using the least absolute shrinkage and selection operator (LASSO) method and constructed five ML models applying diverse algorithms including random forest classifier (RFC), categorical boosting (CatBoost), support vector machine (SVM) with linear kernel, light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost). The Shapley Additive Explanations (SHAP) analysis provided interpretation for the best ML model. The training, internal, and external validation cohorts included 658, 282, and 64 IAs, respectively. The best performance was presented by SVM as AUC of 0.817 in the internal [95% confidence interval (CI), 0.769-0.866] and 0.893 in the external (95% CI, 0.808-0.979) validation cohorts, which overperformed compared with the PHASES score significantly (all P < 0.001). SHAP analysis showed maximum size, location, and irregular shape were the top three important features to predict rupture. Our SVM model based on readily accessible features presented satisfying ability of discrimination in predicting the rupture IAs with small size. Morphological parameters made important contributions to prediction result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
glowworm完成签到 ,获得积分10
刚刚
2秒前
咸鱼完成签到,获得积分10
3秒前
Hh发布了新的文献求助10
5秒前
6秒前
XL神放完成签到 ,获得积分10
7秒前
8秒前
Hello应助快乐科研梁采纳,获得10
9秒前
oweing发布了新的文献求助10
9秒前
13秒前
imkhun1021发布了新的文献求助10
13秒前
PSY完成签到,获得积分10
13秒前
15秒前
16秒前
16秒前
ding应助大芳儿采纳,获得10
16秒前
汤锐发布了新的文献求助10
18秒前
18秒前
wanci应助Hh采纳,获得10
18秒前
imkhun1021完成签到,获得积分10
18秒前
mmm发布了新的文献求助10
19秒前
杳鸢应助瘦瘦的寒珊采纳,获得10
21秒前
Cccc小懒发布了新的文献求助10
21秒前
所所应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
不安青牛应助科研通管家采纳,获得10
24秒前
yangching应助科研通管家采纳,获得10
24秒前
祥梦伊飞应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
24秒前
26秒前
三火完成签到,获得积分10
27秒前
健忘煎蛋发布了新的文献求助10
28秒前
yangching应助bluse033采纳,获得20
28秒前
30秒前
大芳儿发布了新的文献求助10
30秒前
32秒前
32秒前
32秒前
你好啊发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162121
求助须知:如何正确求助?哪些是违规求助? 2813196
关于积分的说明 7899113
捐赠科研通 2472301
什么是DOI,文献DOI怎么找? 1316428
科研通“疑难数据库(出版商)”最低求助积分说明 631305
版权声明 602142