Metro crew planning with day-off pattern, duty type, and rostering scheme considerations

机组调度 启发式 船员 列生成 计算机科学 启发式 运筹学 整数规划 方案(数学) 调度(生产过程) 数学优化 实时计算 工程类 人工智能 算法 数学 数学分析 航空学 操作系统
作者
Jue Zhou,Xiaoming Xu,Jiancheng Long,Jianxun Ding
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:143: 103832-103832 被引量:11
标识
DOI:10.1016/j.trc.2022.103832
摘要

The metro crew planning must consider various complex factors in real scenarios, such as day-off requirements, duty types, and rostering rules. The metro crew planning problem is often divided into crew scheduling and rostering problems, which are modeled separately and solved sequentially. However, the solution determined in a sequential planning process may not guarantee the optimality of the entire crew planning problem. This study is a first attempt at including rostering pattern consideration in the metro crew planning problem, where a rostering pattern is defined as the combination of a day-off pattern, a set of duty types and a rostering scheme. To solve this complicated problem, we first generate a multiple-layer time–space network where duty time windows with specific duty types are represented by different layers. We then model the considered crew planning problem using a path-based integer program on the time–space network and develop two column generation-based heuristics to solve the problem, where dual prices are particularly used in generating train paths. A computational study is conducted with real-life data derived from Hefei Metro to examine the effectiveness of the modeling and solution methods as well as observe the benefits of roster pattern designs. • Crew planning with day-off pattern, duty type, and rostering scheme is studied. • An integer linear program is formulated with path-selection variables. • Two column generation-based heuristics are developed. • Performance of the proposed heuristic is tested computationally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
共享精神应助TYF采纳,获得10
2秒前
2秒前
洪豆豆完成签到,获得积分10
3秒前
4秒前
kejun发布了新的文献求助30
5秒前
Kelsey完成签到 ,获得积分10
7秒前
哈哈哈发布了新的文献求助10
7秒前
7秒前
辛勤凝丝发布了新的文献求助10
8秒前
wssamuel完成签到 ,获得积分10
9秒前
zzzzz完成签到,获得积分10
9秒前
9秒前
水穷云起完成签到,获得积分10
9秒前
9秒前
科研通AI6应助YE采纳,获得10
12秒前
赘婿应助杜小宝采纳,获得10
13秒前
府于杰发布了新的文献求助10
14秒前
TYF发布了新的文献求助10
14秒前
cpl完成签到,获得积分20
14秒前
落后的难胜完成签到 ,获得积分10
15秒前
陈肖楠完成签到,获得积分10
15秒前
qsmei2020发布了新的文献求助10
16秒前
16秒前
梁正凤发布了新的文献求助10
17秒前
夜琉璃应助辛勤凝丝采纳,获得10
17秒前
夜包子123完成签到,获得积分10
18秒前
乐此不疲的猪完成签到,获得积分10
18秒前
WGS发布了新的文献求助10
20秒前
Ava应助哈哈哈采纳,获得10
20秒前
23秒前
中国大陆完成签到,获得积分10
23秒前
洋子完成签到 ,获得积分10
25秒前
27秒前
娜娜子完成签到 ,获得积分10
27秒前
Lucas应助JIANG0710采纳,获得10
28秒前
踏实亦玉完成签到 ,获得积分20
30秒前
暴躁的念之完成签到 ,获得积分10
31秒前
灵巧蓉完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565407
求助须知:如何正确求助?哪些是违规求助? 4650389
关于积分的说明 14691103
捐赠科研通 4592283
什么是DOI,文献DOI怎么找? 2519578
邀请新用户注册赠送积分活动 1491994
关于科研通互助平台的介绍 1463199