Metro crew planning with day-off pattern, duty type, and rostering scheme considerations

机组调度 启发式 船员 列生成 计算机科学 启发式 运筹学 整数规划 方案(数学) 调度(生产过程) 数学优化 实时计算 工程类 人工智能 算法 数学 数学分析 航空学 操作系统
作者
Jue Zhou,Xiaoming Xu,Jiancheng Long,Jianxun Ding
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:143: 103832-103832 被引量:12
标识
DOI:10.1016/j.trc.2022.103832
摘要

The metro crew planning must consider various complex factors in real scenarios, such as day-off requirements, duty types, and rostering rules. The metro crew planning problem is often divided into crew scheduling and rostering problems, which are modeled separately and solved sequentially. However, the solution determined in a sequential planning process may not guarantee the optimality of the entire crew planning problem. This study is a first attempt at including rostering pattern consideration in the metro crew planning problem, where a rostering pattern is defined as the combination of a day-off pattern, a set of duty types and a rostering scheme. To solve this complicated problem, we first generate a multiple-layer time–space network where duty time windows with specific duty types are represented by different layers. We then model the considered crew planning problem using a path-based integer program on the time–space network and develop two column generation-based heuristics to solve the problem, where dual prices are particularly used in generating train paths. A computational study is conducted with real-life data derived from Hefei Metro to examine the effectiveness of the modeling and solution methods as well as observe the benefits of roster pattern designs. • Crew planning with day-off pattern, duty type, and rostering scheme is studied. • An integer linear program is formulated with path-selection variables. • Two column generation-based heuristics are developed. • Performance of the proposed heuristic is tested computationally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zh1858f发布了新的文献求助10
2秒前
汤泽琪发布了新的文献求助10
2秒前
4秒前
rooner完成签到,获得积分10
4秒前
4秒前
qing发布了新的文献求助10
4秒前
4秒前
5秒前
在水一方应助XLL小绿绿采纳,获得10
5秒前
liu完成签到,获得积分10
6秒前
哦呦看灰机完成签到,获得积分20
6秒前
上官若男应助qcj采纳,获得10
6秒前
豆花完成签到,获得积分10
7秒前
8秒前
Redemption发布了新的文献求助10
8秒前
bb发布了新的文献求助10
8秒前
刺五加发布了新的文献求助10
8秒前
汤泽琪完成签到,获得积分10
9秒前
9秒前
10秒前
Joy完成签到,获得积分20
10秒前
彭于晏应助哦呦看灰机采纳,获得10
10秒前
mo发布了新的文献求助10
10秒前
www发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
111发布了新的文献求助10
11秒前
12秒前
干净一鸣完成签到,获得积分10
12秒前
13秒前
缪连虎发布了新的文献求助10
13秒前
13秒前
immunity发布了新的文献求助10
13秒前
14秒前
mufulee完成签到,获得积分10
14秒前
14秒前
焦糖玛奇朵完成签到,获得积分10
15秒前
SciGPT应助小曹医生采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743602
求助须知:如何正确求助?哪些是违规求助? 5414972
关于积分的说明 15348028
捐赠科研通 4884256
什么是DOI,文献DOI怎么找? 2625707
邀请新用户注册赠送积分活动 1574549
关于科研通互助平台的介绍 1531467