Surface roughness prediction model in high-speed dry milling CFRP considering carbon fiber distribution

表面粗糙度 机械加工 材料科学 碳纤维增强聚合物 表面光洁度 复合材料 纤维 机械工程 冶金 工程类 复合数
作者
Yang Song,Huajun Cao,Qianyue Wang,Jin Zhang,Chunping Yan
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:245: 110230-110230 被引量:11
标识
DOI:10.1016/j.compositesb.2022.110230
摘要

The surface roughness of carbon fiber-reinforced polymer (CFRP) components is extremely important because of the increasing demand for higher performance, reliability, and longer lifetime in aerospace and other manufacturing industries. However, the cutting mechanisms of CFRP are still unclear, which limits its formation mechanism prediction for surface roughness. Thus far, this study presents three action mechanisms in the CFRP machining process: accumulation bouncing on the matrix, impact effect on carbon fibers, and workpiece self-action. The workpiece self-action was reflected and calculated using the light rope model, which is new in CFRP machining. Furthermore, the formation mechanisms of surface roughness were first elucidated in the high-speed dry (HSD) milling of CFRP. An accurate surface roughness prediction model was theoretically formulated considering the kinematics, dynamics, and carbon fiber distribution. Surface roughness was expressed as the three-dimensional arithmetic mean height. The surface roughness prediction model was established and confirmed to have a high prediction accuracy of 90.05%, demonstrating that the distribution of carbon fibers was the main influencing factor of the surface roughness. Moreover, nonlinear regression analysis was used to clarify the effects of cutting parameters on the surface roughness, impact effect, and relationship between the surface roughness and impact effect. The study verified the feasibility of HSD milling CFRP, and it also provided guidance for breaking the low-speed machining limits by improving the machining process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Always完成签到,获得积分10
刚刚
刚刚
memedaaaah发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
2秒前
平常的迎夏完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
隐形曼青应助秋澄采纳,获得10
4秒前
4秒前
6秒前
xzn发布了新的文献求助10
6秒前
hahaha发布了新的文献求助10
6秒前
6秒前
青云冰城发布了新的文献求助10
7秒前
oo发布了新的文献求助10
7秒前
7秒前
不倒翁37发布了新的文献求助10
8秒前
cmdan完成签到,获得积分10
8秒前
蓝溺完成签到,获得积分10
9秒前
邵小庆发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
桐桐应助cc采纳,获得10
11秒前
等待吐司应助欢喜代萱采纳,获得10
11秒前
ss完成签到 ,获得积分10
11秒前
刘乐发布了新的文献求助10
11秒前
柳觅夏发布了新的文献求助10
11秒前
Lucas应助芜湖芜湖采纳,获得10
12秒前
HOOW发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
15秒前
cytheria发布了新的文献求助10
15秒前
时间的过客完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961