过电位
离子液体
材料科学
过渡金属
离子键合
电催化剂
亚稳态
堆积
位阻效应
相(物质)
氢键
化学工程
纳米技术
化学物理
电化学
离子
物理化学
催化作用
化学
有机化学
电极
分子
工程类
作者
Jianing Yang,Qiuchen Xu,Yiteng Zheng,Zhangmin Tian,Yingying Shi,Chenxu Ma,Guiying Liu,Bin Peng,Zhen Wang,Wenjun Zheng
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-09-01
卷期号:16 (9): 15215-15225
被引量:20
标识
DOI:10.1021/acsnano.2c06549
摘要
Metallic group VIB transition metal dichalcogenides (1T-TMDs) have attracted great interest because of their outstanding performance in electrocatalysis, supercapacitors, batteries, and so on, whereas the strict fabrication conditions and thermodynamical metastability of 1T-TMDs greatly restrict their extensive applications. Therefore, it is significant to obtain stable and high-concentration 1T-TMDs in a simple and large-scale strategy. Herein, we report a facile and large-scale synthesis of high-concentration 1T-TMDs via an ionic liquid (IL) assisted hydrothermal strategy, including 1T-MoS2 (the obtained MoS2 sample was denoted as MoS2-IL), 1T-WS2, 1T-MoSe2, and 1T-WSe2. More importantly, we found that IL can adsorb on the surface of 1T-MoS2, where the steric hindrance, π-π stacking, and hydrogen bonds of ionic liquid collectively induce the formation of the 1T-MoS2. In addition, DFT calculation reveals that electrons are transferred from [BMIM]SCN (1-butyl-3-methylimidazolium thiocyanate) to 1T-MoS2 layers by hydrogen bonds, which enhances the stability of 1T-MoS2, so the MoS2-IL performs with high stability for 180 days at room temperature without obvious change. Furthermore, the MoS2-IL exhibits excellent HER performance with an overpotential of 196 mV at 10 mA cm-2 in acid conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI