The Diagnosis of Developmental Dysplasia of the Hip From Hip Ultrasonography Images With Deep Learning Methods

医学 髋关节发育不良 发育不良 放射科 超声科 射线照相术 病理
作者
Hakan Atalar,Kemal Üreten,Gül Tokdemir,Tolga Tolunay,Murat Çiçeklidağ,Osman Şahap Atik
出处
期刊:Journal of Pediatric Orthopaedics [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (2): e132-e137 被引量:7
标识
DOI:10.1097/bpo.0000000000002294
摘要

Hip ultrasonography is very important in the early diagnosis of developmental dysplasia of the hip. The application of deep learning-based medical image analysis to computer-aided diagnosis has the potential to provide decision-making support to clinicians and improve the accuracy and efficiency of various diagnostic and treatment processes. This has encouraged new research and development efforts in computer-aided diagnosis. The aim of this study was to evaluate hip sonograms using computer-assisted deep-learning methods.The study included 376 sonograms evaluated as normal according to the Graf method, 541 images with dysplasia and 365 images with incorrect probe position. To classify the developmental hip dysplasia ultrasound images, transfer learning was applied with pretrained VGG-16, ResNet-101, MobileNetV2 and GoogLeNet networks. The performances of the networks were evaluated with the performance parameters of accuracy, sensitivity, specificity, precision, F1 score, and AUC (area under the ROC curve).The accuracy, sensitivity, specificity, precision, F1 score, and AUC results obtained by testing the VGG-16, ResNet-101, MobileNetV2, and GoogLeNet models showed performance >80%. With the pretrained VGG-19 model, 93%, 93.5%, 96.7%, 92.3%, 92.6%, and 0.99 accuracy, sensitivity, specificity, precision, F1 score, and AUC results were obtained, respectively.In this study, in addition to the ultrasonography images of dysplastic and healthy hips, images were also included of probe malpositioning, and these images were able to be successfully evaluated with deep learning methods. On the sonograms, which provided criteria appropriate for evaluation, successful differentiation could be made of healthy hips and dysplastic hips.Level-IV; diagnostic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucky完成签到 ,获得积分10
刚刚
1秒前
敦敦完成签到,获得积分20
2秒前
2秒前
FashionBoy应助Z.one采纳,获得10
3秒前
田様应助550采纳,获得10
3秒前
火火火小朋友完成签到 ,获得积分10
4秒前
wlm完成签到,获得积分10
6秒前
何必发布了新的文献求助10
6秒前
又又应助我要吃挂面采纳,获得10
7秒前
zjspidany应助心系你采纳,获得10
9秒前
9秒前
9秒前
思源应助gaogao采纳,获得10
9秒前
娟娟完成签到 ,获得积分10
9秒前
12秒前
何必完成签到,获得积分10
13秒前
13秒前
Akim应助11111111111采纳,获得10
14秒前
键华发布了新的文献求助30
14秒前
qq完成签到,获得积分10
15秒前
Candice应助涵霸天采纳,获得10
16秒前
123完成签到,获得积分10
16秒前
zzzsss发布了新的文献求助10
16秒前
xixi发布了新的文献求助10
17秒前
十月二十发布了新的文献求助10
17秒前
左丘丹烟完成签到,获得积分10
18秒前
不是省油的灯完成签到,获得积分10
18秒前
lime发布了新的文献求助10
18秒前
元不二发布了新的文献求助10
18秒前
深情安青应助失眠的元风采纳,获得10
19秒前
wlm发布了新的文献求助10
19秒前
SciGPT应助Amber采纳,获得100
20秒前
赘婿应助甜甜小蜜蜂采纳,获得10
20秒前
20秒前
无花果应助Nicole采纳,获得10
20秒前
大街小巷完成签到,获得积分10
21秒前
21秒前
英俊的铭应助热心的紫寒采纳,获得10
23秒前
小鹿斑比完成签到,获得积分10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260841
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318187
捐赠科研通 2571677
什么是DOI,文献DOI怎么找? 1397150
科研通“疑难数据库(出版商)”最低求助积分说明 653663
邀请新用户注册赠送积分活动 632213