GA-BP neural network modeling for project portfolio risk prediction

人工神经网络 文件夹 计算机科学 数据挖掘 熵(时间箭头) 风险管理 模糊逻辑 项目组合管理 风险评估 预测建模 机器学习 人工智能 项目管理 工程类 量子力学 金融经济学 物理 计算机安全 经济 管理 系统工程
作者
Libiao Bai,Lan Wei,Yipei Zhang,Kanyin Zheng,Xinyu Zhou
出处
期刊:Journal of Enterprise Information Management [Emerald Publishing Limited]
卷期号:37 (3): 828-850 被引量:4
标识
DOI:10.1108/jeim-07-2022-0247
摘要

Purpose Project portfolio risk (PPR) management plays an important role in promoting the smooth implementation of a project portfolio (PP). Accurate PPR prediction helps managers cope with risks timely in complicated PP environments. However, studies on accurate PPR impact degree prediction, which consists of both risk occurrence probabilities and risk impact consequences considering project interactions, are limited. This study aims to model PPR prediction and expand PPR prediction tools. Design/methodology/approach In this study, the authors build a PPR prediction model based on a genetic algorithm and back-propagation neural network (GA-BPNN) integrated with entropy-trapezoidal fuzzy numbers. Then, the authors verify the proposed model with real data and obtain PPR impact degrees. Findings The test results indicate that the proposed method achieves an average absolute error of 0.002 and an average prediction accuracy rate of 97.8%. The former is reduced by 0.038, while the latter is improved by 32.1% when compared with the results of the original BPNN model. Finally, the authors conduct an index sensitivity analysis for identifying critical risks to effectively control them. Originality/value This study develops a hybrid PPR prediction model that integrates a GA-BPNN with entropy-trapezoidal fuzzy numbers. The authors use this model to predict PPR impact degrees, which consist of both risk occurrence probabilities and risk impact consequences considering project interactions. The results provide insights into PPR management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助靓仔要亮采纳,获得10
刚刚
keeryu完成签到,获得积分10
1秒前
崔尔蓉完成签到,获得积分10
1秒前
1秒前
luo发布了新的文献求助10
1秒前
2秒前
占那个完成签到 ,获得积分10
2秒前
2秒前
louge完成签到,获得积分10
3秒前
科研通AI6应助zzxx采纳,获得10
3秒前
4秒前
旧雨新知完成签到 ,获得积分10
4秒前
5秒前
walu完成签到,获得积分10
5秒前
彩色世倌发布了新的文献求助10
5秒前
Hohaha发布了新的文献求助10
6秒前
7秒前
7秒前
max完成签到,获得积分10
7秒前
快乐旭尧完成签到,获得积分10
10秒前
LXY171发布了新的文献求助20
10秒前
walu发布了新的文献求助20
10秒前
丁浩伦应助小火锅采纳,获得10
10秒前
QQ发布了新的文献求助10
11秒前
Hazel发布了新的文献求助10
13秒前
11111完成签到,获得积分10
13秒前
小蘑菇应助颜林林采纳,获得10
13秒前
小马完成签到,获得积分10
14秒前
顾矜应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
Zz应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
不想干活应助科研通管家采纳,获得30
16秒前
科研通AI6应助madmax采纳,获得30
16秒前
16秒前
不想干活应助科研通管家采纳,获得10
16秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4548118
求助须知:如何正确求助?哪些是违规求助? 3978952
关于积分的说明 12319973
捐赠科研通 3647538
什么是DOI,文献DOI怎么找? 2008814
邀请新用户注册赠送积分活动 1044272
科研通“疑难数据库(出版商)”最低求助积分说明 932888