TSE DeepLab: An efficient visual transformer for medical image segmentation

计算机科学 变压器 分割 图像(数学) 人工智能 电压 量子力学 物理
作者
Jingdong Yang,Jun Tu,Xiaolin Zhang,Shaoqing Yu,Zheng Xianyou
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104376-104376 被引量:15
标识
DOI:10.1016/j.bspc.2022.104376
摘要

In Brief: An efficient image segmentation model, TSE DeepLab is proposed for clincial image segmentation on sinusitis and patellar fracture instances. TSE DeepLab replaces global average pooling with TSE block, which consists of visual Transformer in form of static visual tokens and SE block, in order to improve the ability of global feature extraction. • Transformer in form of static visual tokens is applied in clincial image to improve global feature extraction. • The hyperparameters of TSE block is optimized to speed up the convergence and improve segmentation performance. Medical image segmentation is the key research of precision medicine. The existing models often ignore some important pixel features and fail to effectively extract global correlation features, which causes poor performance of segmentation. In this paper, we propose TSE DeepLab, which retains the original atrous convolution for extraction of local feature on the basis of DeepLabv3 framework, converts the feature maps after backbone into visual tokens, and further feeds them into Transformer module to enhance the ability of global feature extraction. At the same time, squeeze and excitation components are added to sort the importance of channels after Transformer module, so that the model pays attention to the important pixel features of each channel. In this paper, we apply 5-fold cross-validation to study the clinical sinus instances of Shanghai Tongji Hospital affiliated to Tongji University and the patellar fracture instances of the Sixth People's Hospital affiliated to Shanghai Jiao Tong University. The average of evaluation measures achieves Accuracy of 99.74%, Precision of 93.67%, IOU of 88.10%, Specificity of 99.87%, Fl-score of 93.63%, Sensitivity of 93.82% on sinus dataset and Accuracy of 99.53%, Precision of 85.64%, IOU of 78.47%, Specificity of 99.72%, Fl-score of 87.15%, Sensitivity of 89.95% on patellar fracture dataset. Compared with various typical segmentation models, the proposed model attains better segmentation accuracy and generalization performance, and has better reference value for clinical medical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuding1978完成签到,获得积分10
刚刚
好好完成签到,获得积分10
刚刚
尹冰露发布了新的文献求助10
刚刚
1秒前
1秒前
若离发布了新的文献求助10
2秒前
快乐的千秋完成签到,获得积分10
2秒前
popo完成签到,获得积分10
3秒前
xiao完成签到,获得积分20
3秒前
4秒前
乐乐妈完成签到,获得积分10
4秒前
一只新能源科研小白完成签到,获得积分10
4秒前
安静的新梅完成签到,获得积分10
4秒前
4秒前
山丘完成签到,获得积分10
5秒前
RESLR完成签到,获得积分10
5秒前
义气过客应助AliceWong采纳,获得10
5秒前
小马甲应助俊男采纳,获得10
5秒前
Crazy111发布了新的文献求助10
6秒前
Jake完成签到,获得积分10
6秒前
静心完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
李健的小迷弟应助ZHQ采纳,获得10
7秒前
xiao发布了新的文献求助30
8秒前
8秒前
小二郎应助十八采纳,获得10
8秒前
简单文博发布了新的文献求助10
8秒前
脑洞疼应助安静的新梅采纳,获得10
9秒前
diaohua完成签到,获得积分10
9秒前
123完成签到,获得积分20
10秒前
绿野仙踪完成签到,获得积分10
10秒前
10秒前
maidoudou发布了新的文献求助10
11秒前
11秒前
平凡的七月完成签到,获得积分10
11秒前
Zer完成签到,获得积分10
12秒前
lilili发布了新的文献求助10
12秒前
CL完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299125
求助须知:如何正确求助?哪些是违规求助? 2934137
关于积分的说明 8467404
捐赠科研通 2607589
什么是DOI,文献DOI怎么找? 1423778
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645351