化学
分子动力学
立体化学
氢键
二聚体
疏水效应
范德瓦尔斯力
表面等离子共振
对接(动物)
相互作用能
离解常数
计算化学
分子
有机化学
生物化学
纳米技术
医学
材料科学
护理部
受体
纳米颗粒
作者
Shaodan Chen,Zhen‐Qiang Mu,Tianqiao Yong,Jiangyong Gu,Yifan Zhang,Xiong Guan,Yizhen Xie,Chun Xiao,Huiping Hu,X. B. Yang,Xiangmin Li,Manjun Cai,Qingping Wu
标识
DOI:10.1016/j.crfs.2022.10.026
摘要
A novel bis-γ-butyrolactone grifolamine A (1), the first γ-butyrolactone dimer from nature, together with three known γ-butyrolactones (2-4), was isolated from the byproduct from Grifola frondosa polysaccharides preparation process. The structure and stereochemistry of grifolamine A (1) were elucidated by extensive spectroscopic analysis combined with quantum chemical calculation. The biosynthetic origin of compound 1, as well as 2-4 was proposed. Grifolamine A (1) showed an intense inhibition against α-glucosidase in vitro. The underlying inhibitory mechanism was revealed by surface plasmon resonance (SPR), molecular docking, molecular dynamics (MD) simulation and binding free energy calculation. SPR revealed that grifolamine A exhibited a strong affinity to α-glucosidase with an equilibrium dissociation constant (KD) value of 1.178 × 10-4 M. Molecular docking manifested that grifolamine A sat at the active pocket of α-glucosidase by van der Waals force, alkyl interaction and carbon hydrogen bonds, and consequently changed the micro-environmental structure of α-glucosidase. MD simulation revealed that grifolamine A had high binding affinity to α-glucosidase with average free energy of -25.2 ± 3.2 kcal/mol. Free energy decomposition indicated amino acid residues including PHE298, PHE308, PHE309, PHE155 and ARG310 at the binding pocket played a strongly positive effect on the interaction between grifolamine A and α-glucosidase. Our findings provide valuable information for the design and development of novel α-glucosidase inhibitors based on γ-butyrolactone skeleton.
科研通智能强力驱动
Strongly Powered by AbleSci AI