Antigen carriers that can selectively deliver antigens to antigen presenting cells and which can simultaneously activate these cells (adjuvant property) are necessary for efficient cancer immunotherapy or vaccination. Delivery of a model antigen into dendritic cell cytosol has been achieved by pH-responsive polymer-modified liposomes via destabilization of endosomal membranes responding to acidic pH, which impelled antigen-specific cellular immunity. Furthermore, β-glucan-based pH-responsive polysaccharides have shown not only cytosolic antigen delivery performance but also adjuvant property, which further heightened cellular immune responses. Because pH-responsive polysaccharides have anionic carboxy groups, cationic lipid was introduced to liposomes in this study to improve the modification efficiency of pH-responsive polysaccharides and to improve their adjuvanticity and immunity-inducing functions. Introduction of cationic lipids increased the amounts of polysaccharide derivatives on the liposome and increased the cellular association of the liposomes to dendritic cells. Liposomes containing β-glucan-based pH-responsive polysaccharides and cationic lipids increased cytokine production from dendritic cells much more than other polysaccharide derivatives did. Furthermore, through improvement of intra-tumoral immunosuppression and induction of antigen-specific cellular immunity, administering these liposomes impelled tumor suppression even with a small antigen dose. These results suggest that introducing cationic lipids and using pH-responsive polysaccharides having intrinsically adjuvant function are effective for producing liposomal nanovaccines showing strong immunity-inducing function.