Graph based multi-scale neighboring topology deep learning for kidney and tumor segmentation

计算机科学 分割 图形 图像分割 卷积神经网络 人工智能 模式识别(心理学) 网络拓扑 拓扑(电路) 理论计算机科学 数学 操作系统 组合数学
作者
Ping Xuan,Hanwen Bi,Hui Cui,Qiangguo Jin,Tiangang Zhang,Huawei Tu,Peng Cheng,Changyang Li,Zhiyu Ning,Menghan Guo,Henry B.L. Duh
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 225018-225018 被引量:6
标识
DOI:10.1088/1361-6560/ac9e3f
摘要

Abstract Objective. Effective learning and modelling of spatial and semantic relations between image regions in various ranges are critical yet challenging in image segmentation tasks. Approach. We propose a novel deep graph reasoning model to learn from multi-order neighborhood topologies for volumetric image segmentation. A graph is first constructed with nodes representing image regions and graph topology to derive spatial dependencies and semantic connections across image regions. We propose a new node attribute embedding mechanism to formulate topological attributes for each image region node by performing multi-order random walks (RW) on the graph and updating neighboring topologies at different neighborhood ranges. Afterwards, multi-scale graph convolutional autoencoders are developed to extract deep multi-scale topological representations of nodes and propagate learnt knowledge along graph edges during the convolutional and optimization process. We also propose a scale-level attention module to learn the adaptive weights of topological representations at multiple scales for enhanced fusion. Finally, the enhanced topological representation and knowledge from graph reasoning are integrated with content features before feeding into the segmentation decoder. Main results. The evaluation results over public kidney and tumor CT segmentation dataset show that our model outperforms other state-of-the-art segmentation methods. Ablation studies and experiments using different convolutional neural networks backbones show the contributions of major technical innovations and generalization ability. Significance. We propose for the first time an RW-driven MCG with scale-level attention to extract semantic connections and spatial dependencies between a diverse range of regions for accurate kidney and tumor segmentation in CT volumes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iwsaml发布了新的文献求助50
2秒前
2秒前
2秒前
吉吉国王完成签到,获得积分10
4秒前
5秒前
5秒前
konkon完成签到,获得积分10
7秒前
liang发布了新的文献求助10
7秒前
烟花应助李子采纳,获得10
8秒前
18R13发布了新的文献求助10
9秒前
学生白完成签到,获得积分10
9秒前
落日晨曦完成签到,获得积分10
12秒前
12秒前
liang完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
103921wjk完成签到,获得积分10
15秒前
acadedog完成签到 ,获得积分10
16秒前
欧小仙完成签到,获得积分10
17秒前
17秒前
cocolu应助周周采纳,获得10
17秒前
synthia发布了新的文献求助10
18秒前
吴涛发布了新的文献求助10
18秒前
阿杜阿杜发布了新的文献求助10
20秒前
科研通AI2S应助dingjianqiang采纳,获得10
20秒前
jinyu完成签到,获得积分10
20秒前
xia完成签到,获得积分10
24秒前
26秒前
科研通AI2S应助彼得大帝采纳,获得10
27秒前
yh发布了新的文献求助10
29秒前
北偶发布了新的文献求助10
29秒前
29秒前
阿杜阿杜完成签到,获得积分10
30秒前
小太阳完成签到 ,获得积分10
31秒前
爱吃饺子的小仓鼠完成签到,获得积分10
34秒前
科研通AI2S应助疯狂的月亮采纳,获得10
35秒前
大模型应助小天采纳,获得10
36秒前
一区作者完成签到,获得积分10
36秒前
Charles发布了新的文献求助30
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316498
求助须知:如何正确求助?哪些是违规求助? 2948223
关于积分的说明 8539677
捐赠科研通 2624118
什么是DOI,文献DOI怎么找? 1435867
科研通“疑难数据库(出版商)”最低求助积分说明 665703
邀请新用户注册赠送积分活动 651634