Graph based multi-scale neighboring topology deep learning for kidney and tumor segmentation

计算机科学 分割 图形 图像分割 卷积神经网络 人工智能 模式识别(心理学) 网络拓扑 拓扑(电路) 理论计算机科学 数学 操作系统 组合数学
作者
Ping Xuan,Hanwen Bi,Hui Cui,Qiangguo Jin,Tiangang Zhang,Huawei Tu,Peng Cheng,Changyang Li,Zhiyu Ning,Menghan Guo,Henry B.L. Duh
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 225018-225018 被引量:6
标识
DOI:10.1088/1361-6560/ac9e3f
摘要

Abstract Objective. Effective learning and modelling of spatial and semantic relations between image regions in various ranges are critical yet challenging in image segmentation tasks. Approach. We propose a novel deep graph reasoning model to learn from multi-order neighborhood topologies for volumetric image segmentation. A graph is first constructed with nodes representing image regions and graph topology to derive spatial dependencies and semantic connections across image regions. We propose a new node attribute embedding mechanism to formulate topological attributes for each image region node by performing multi-order random walks (RW) on the graph and updating neighboring topologies at different neighborhood ranges. Afterwards, multi-scale graph convolutional autoencoders are developed to extract deep multi-scale topological representations of nodes and propagate learnt knowledge along graph edges during the convolutional and optimization process. We also propose a scale-level attention module to learn the adaptive weights of topological representations at multiple scales for enhanced fusion. Finally, the enhanced topological representation and knowledge from graph reasoning are integrated with content features before feeding into the segmentation decoder. Main results. The evaluation results over public kidney and tumor CT segmentation dataset show that our model outperforms other state-of-the-art segmentation methods. Ablation studies and experiments using different convolutional neural networks backbones show the contributions of major technical innovations and generalization ability. Significance. We propose for the first time an RW-driven MCG with scale-level attention to extract semantic connections and spatial dependencies between a diverse range of regions for accurate kidney and tumor segmentation in CT volumes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可发布了新的文献求助10
刚刚
汪锦程发布了新的文献求助10
1秒前
小Y应助Firenze采纳,获得10
1秒前
Orange应助Firenze采纳,获得10
1秒前
1秒前
2秒前
xrr完成签到,获得积分10
2秒前
chenchenchen发布了新的文献求助10
3秒前
夏天完成签到,获得积分10
3秒前
英俊的铭应助万事顺意采纳,获得10
3秒前
Ava应助ferry123采纳,获得10
3秒前
瞌瞌完成签到,获得积分10
3秒前
lalaland完成签到,获得积分10
4秒前
4秒前
爱笑的香寒完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
4秒前
LXY完成签到,获得积分10
5秒前
空白完成签到,获得积分10
5秒前
浊酒完成签到,获得积分20
6秒前
7秒前
yezhi完成签到,获得积分10
7秒前
Owen应助孙伟健采纳,获得10
7秒前
科研通AI6应助哭泣的灵寒采纳,获得10
7秒前
小白完成签到,获得积分10
8秒前
8秒前
怡然的梦之完成签到,获得积分10
8秒前
好想吃豆腐脑完成签到,获得积分10
9秒前
深情安青应助ww采纳,获得10
9秒前
9秒前
画画完成签到,获得积分20
9秒前
小马甲应助快乐乐松采纳,获得10
9秒前
小叮当完成签到,获得积分10
10秒前
土星发布了新的文献求助10
10秒前
SciGPT应助黎黎采纳,获得10
10秒前
hyh发布了新的文献求助10
11秒前
renwoxing完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
Foalphaz发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586