亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph based multi-scale neighboring topology deep learning for kidney and tumor segmentation

计算机科学 分割 图形 图像分割 卷积神经网络 人工智能 模式识别(心理学) 网络拓扑 拓扑(电路) 理论计算机科学 数学 操作系统 组合数学
作者
Ping Xuan,Hanwen Bi,Hui Cui,Qiangguo Jin,Tiangang Zhang,Huawei Tu,Peng Cheng,Changyang Li,Zhiyu Ning,Menghan Guo,Henry B.L. Duh
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 225018-225018 被引量:6
标识
DOI:10.1088/1361-6560/ac9e3f
摘要

Abstract Objective. Effective learning and modelling of spatial and semantic relations between image regions in various ranges are critical yet challenging in image segmentation tasks. Approach. We propose a novel deep graph reasoning model to learn from multi-order neighborhood topologies for volumetric image segmentation. A graph is first constructed with nodes representing image regions and graph topology to derive spatial dependencies and semantic connections across image regions. We propose a new node attribute embedding mechanism to formulate topological attributes for each image region node by performing multi-order random walks (RW) on the graph and updating neighboring topologies at different neighborhood ranges. Afterwards, multi-scale graph convolutional autoencoders are developed to extract deep multi-scale topological representations of nodes and propagate learnt knowledge along graph edges during the convolutional and optimization process. We also propose a scale-level attention module to learn the adaptive weights of topological representations at multiple scales for enhanced fusion. Finally, the enhanced topological representation and knowledge from graph reasoning are integrated with content features before feeding into the segmentation decoder. Main results. The evaluation results over public kidney and tumor CT segmentation dataset show that our model outperforms other state-of-the-art segmentation methods. Ablation studies and experiments using different convolutional neural networks backbones show the contributions of major technical innovations and generalization ability. Significance. We propose for the first time an RW-driven MCG with scale-level attention to extract semantic connections and spatial dependencies between a diverse range of regions for accurate kidney and tumor segmentation in CT volumes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lod完成签到,获得积分10
1秒前
15秒前
淡淡醉波wuliao完成签到 ,获得积分0
39秒前
可可完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
熊啊发布了新的文献求助10
1分钟前
lj发布了新的文献求助10
1分钟前
Ava应助krajicek采纳,获得10
1分钟前
NexusExplorer应助熊啊采纳,获得10
1分钟前
lj完成签到,获得积分10
1分钟前
1分钟前
krajicek发布了新的文献求助10
1分钟前
排骨大王完成签到,获得积分10
1分钟前
1分钟前
2分钟前
灵巧灵松发布了新的文献求助10
2分钟前
2分钟前
Jiayi完成签到 ,获得积分10
2分钟前
2分钟前
熊啊发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Hello应助梦想家采纳,获得10
3分钟前
bocky完成签到 ,获得积分10
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
4分钟前
h0jian09完成签到,获得积分10
4分钟前
4分钟前
4分钟前
Akim应助krajicek采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
krajicek发布了新的文献求助30
5分钟前
5分钟前
Frank完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568866
求助须知:如何正确求助?哪些是违规求助? 3991276
关于积分的说明 12355594
捐赠科研通 3663388
什么是DOI,文献DOI怎么找? 2018871
邀请新用户注册赠送积分活动 1053272
科研通“疑难数据库(出版商)”最低求助积分说明 940874