Graph based multi-scale neighboring topology deep learning for kidney and tumor segmentation

计算机科学 分割 图形 图像分割 卷积神经网络 人工智能 模式识别(心理学) 网络拓扑 拓扑(电路) 理论计算机科学 数学 操作系统 组合数学
作者
Ping Xuan,Hanwen Bi,Hui Cui,Qiangguo Jin,Tiangang Zhang,Huawei Tu,Peng Cheng,Changyang Li,Zhiyu Ning,Menghan Guo,Henry B.L. Duh
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 225018-225018 被引量:6
标识
DOI:10.1088/1361-6560/ac9e3f
摘要

Abstract Objective. Effective learning and modelling of spatial and semantic relations between image regions in various ranges are critical yet challenging in image segmentation tasks. Approach. We propose a novel deep graph reasoning model to learn from multi-order neighborhood topologies for volumetric image segmentation. A graph is first constructed with nodes representing image regions and graph topology to derive spatial dependencies and semantic connections across image regions. We propose a new node attribute embedding mechanism to formulate topological attributes for each image region node by performing multi-order random walks (RW) on the graph and updating neighboring topologies at different neighborhood ranges. Afterwards, multi-scale graph convolutional autoencoders are developed to extract deep multi-scale topological representations of nodes and propagate learnt knowledge along graph edges during the convolutional and optimization process. We also propose a scale-level attention module to learn the adaptive weights of topological representations at multiple scales for enhanced fusion. Finally, the enhanced topological representation and knowledge from graph reasoning are integrated with content features before feeding into the segmentation decoder. Main results. The evaluation results over public kidney and tumor CT segmentation dataset show that our model outperforms other state-of-the-art segmentation methods. Ablation studies and experiments using different convolutional neural networks backbones show the contributions of major technical innovations and generalization ability. Significance. We propose for the first time an RW-driven MCG with scale-level attention to extract semantic connections and spatial dependencies between a diverse range of regions for accurate kidney and tumor segmentation in CT volumes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Madao发布了新的文献求助10
1秒前
李李李发布了新的文献求助100
1秒前
华仔应助Len采纳,获得30
3秒前
我在青年湖旁完成签到,获得积分10
4秒前
执着的蜗牛应助xiang采纳,获得10
4秒前
6秒前
小丸子完成签到 ,获得积分10
6秒前
Sweeney发布了新的文献求助30
8秒前
英姑应助知性的晓山采纳,获得20
8秒前
xiaolei001应助滕皓轩采纳,获得10
9秒前
xiaolei001应助滕皓轩采纳,获得10
9秒前
QQ糖发布了新的文献求助10
9秒前
11秒前
唐tang完成签到,获得积分20
12秒前
FashionBoy应助cc采纳,获得10
12秒前
12秒前
领导范儿应助小赵采纳,获得10
13秒前
15秒前
16秒前
16秒前
16秒前
Teferi发布了新的文献求助50
17秒前
张菁完成签到,获得积分10
18秒前
陈杰完成签到,获得积分20
19秒前
20秒前
20秒前
Rui发布了新的文献求助10
21秒前
搜集达人应助绿海采纳,获得10
21秒前
852应助huanir99采纳,获得10
21秒前
有钱完成签到,获得积分10
22秒前
22秒前
23秒前
加减乘除发布了新的文献求助10
23秒前
25秒前
26秒前
Myl发布了新的文献求助10
27秒前
小赵发布了新的文献求助10
27秒前
29秒前
29秒前
要减肥忆之完成签到,获得积分20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300309
求助须知:如何正确求助?哪些是违规求助? 4448241
关于积分的说明 13845431
捐赠科研通 4333898
什么是DOI,文献DOI怎么找? 2379231
邀请新用户注册赠送积分活动 1374395
关于科研通互助平台的介绍 1340037