TET2-Mediated mRNA and DNA Oxidation in Leukemia Homing and Immune Evasion

生物 逃避(道德) 免疫系统 白血病 癌症研究 免疫学 信使核糖核酸 分子生物学 遗传学 基因
作者
Yangchan Li,Xiaolan Deng,Lei Dong,Li Han,Le Xuan Truong Nguyen,Jianhuang Xue,Zhicong Zhao,Wei Li,Ying Qing,Chao Shen,Brandon Tan,Zhenhua Chen,Min Xue,Keith Leung,Kitty Wang,Srividya Swaminathan,Ling Li,Mark Wunderlich,James C. Mulloy,Bin Zhang,David Horne,Steven T. Rosen,Guido Marcucci,Mingjiang Xu,Zejuan Li,Minjie Wei,Rui Su,Jianjun Chen
出处
期刊:Blood [Elsevier BV]
卷期号:140 (Supplement 1): 2975-2977
标识
DOI:10.1182/blood-2022-162619
摘要

Emerging evidence strongly indicates that dysregulation of chemical modifications in DNA or RNA leads to hematopoietic malignancies, including acute myeloid leukemia (AML). Tet methycytosine dioxygenases 2 (TET2) mutations have been characterized in 15-20% AML and its deficiency promotes leukemogenesis and leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. TET2 catalyzes the demethylation of DNA 5-methylcytosine (5mC) and plays a central role in transcriptionally regulating gene expression. Besides DNA methylation, recent studies support a novel function for TET2-mediated demethylation of methyl-5-cytosine (termed as 'm5C' to distinguish from DNA 5mC) in mRNAs. However, it is totally unknown whether and (if so) how TET2-induced mRNA m5C demethylation contributes to leukemogenesis (or tumorigenesis in general). To evaluate the role of Tet2 in de novo leukemogenesis, we have generated various AML models driven by AML1-ETO9a (AE9a, from t(8;21)), MLL-AF9 (MA9, from MLL-r/t(11q23)), PML-RARA (from t(15;17)), and NRAS mutation. Such selection is clinically relevant because TET2 mutation and/or transcriptional suppression have been frequently observed in those AML subtypes (Fig. 1A and B). Notably, Tet2 depletion dramatically promoted primary leukemogenesis in vivo (Fig. 1C). Strikingly, Tet2 depletion had very weak effects on the growth/proliferation of primary AML cells in liquid culture in vitro (Fig. 1D). Collectively, Tet2 deficiency led to fast development of AML and such effect is unlikely due to enhanced cell proliferation. To decipher the underlying mechanism(s), we collected the primary Tet2-/- and Tet2+/+ AML cells for transcriptome-wide RNA-seq and found that Tet2 deficiency significantly increased expression of the genes enriched in the "Hematopoietic Stem Cell" pathway (Fig. 1E). Via flow cytometry, we showed that Tet2 deficiency significantly increased the Lin−c-Kit+Sca-1+ (LSK) primitive cell population (Fig. 1F). Via in vivo limiting dilution assay (LDA), we showed that Tet2 deletion significantly increased LSCs frequency by over 30-fold (Fig. 1G). During leukemogenesis, the homing and/or anchoring of LSC into the BM niche plays a predominant role to facilitate LSC self-renewal in vivo. Via in situ confocal imaging, we observed that there were more Tet2 deficient-AML cells migrating into the BM-derived stromal cells relative to the Tet2+/+ group (Fig. 1H). Further studies revealed that Tetranspanin 13 (Tspan13), a core enriched gene in the "Hematopoietic Stem Cell" pathway, is a functionally essential target of Tet2. Tet2 deficiency stimulated Tspan13 expression in primary AML cells (Fig. 1I) and genetic depletion of Tspan13 could substantially reverse the increased LSC homing (Fig. 1J) and self-renewal ability caused by Tet2 depletion. Tet2 deficiency-mediated upregulation of Tspan13 is not dependent on DNA demethylation or transcriptional regulation, but dependent on mRNA demethylation and post-transcriptional regulation (Fig. 1K). Specifically, Tet2 deficiency led to the accumulation of m5C in Tspan13 mRNA (Fig. 1L), and Y-box binding protein 1 (Ybx1), the m5C "reader", could recognize m5C modification, stabilize Tspan13 transcript, and increase its overall expression. The increased expression of Tspan13 further activated the CXCR4/CXCL12 axis, which pays a dominant role in trafficking LSCs into BM niche. In addition to the BM stromal cells, the leukemia microenvironment contains various immune cells which mediate the anti-tumor immune response. Tet2 deficiency remarkably suppressed various immune-related pathways, especially the signaling and genes which are related to interferon (IFN) responses. Specifically, Tet2 deficiency transcriptionally suppressed the expression of IFN-stimulated genes (ISGs), especially Cxcl10, Oasl2, and Isg1 (Fig. 1M and N), via DNA 5hmC modification. Consequently, Tet2 deficiency in AML cells suppressed the recruitment of CD8+ T cells, but not other types of immune cells, and conferred AML cells resistance to CD8+ T cell-mediated antileukemia immunity (Fig. 1O). Collectively, our studies uncover previously unappreciated roles and underlying molecular mechanisms of TET2 in regulating BM niche programing, LSC homing/self-renewal and immune response in AML pathogenesis, as both RNA and DNA demethylase. Figure 1View largeDownload PPTFigure 1View largeDownload PPT Close modal

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
1秒前
000发布了新的文献求助10
2秒前
3秒前
3秒前
123发布了新的文献求助20
4秒前
小懒完成签到,获得积分10
5秒前
5秒前
ChenYX发布了新的文献求助40
7秒前
7秒前
7秒前
洁净平卉发布了新的文献求助10
7秒前
mumu完成签到,获得积分10
8秒前
善学以致用应助刚子采纳,获得10
10秒前
酷波er应助大米粒采纳,获得10
10秒前
shime发布了新的文献求助10
10秒前
10秒前
Terence发布了新的文献求助10
11秒前
maodou发布了新的文献求助10
11秒前
Orange应助effort采纳,获得10
11秒前
091完成签到 ,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
厚礼蟹发布了新的文献求助10
13秒前
聪明邪欢完成签到,获得积分10
14秒前
15秒前
洁净平卉完成签到,获得积分10
15秒前
风中音响发布了新的文献求助10
15秒前
zhangxinyi发布了新的文献求助10
16秒前
miyano完成签到,获得积分10
16秒前
17秒前
19秒前
JamesPei应助maodou采纳,获得10
19秒前
WWW发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
轻松面包完成签到,获得积分10
22秒前
22秒前
22秒前
田様应助苗苗043采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Ride comfort analysis of hydro-pneumatic suspension considering variable damping matched with dynamitic load 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4589978
求助须知:如何正确求助?哪些是违规求助? 4004982
关于积分的说明 12399902
捐赠科研通 3681978
什么是DOI,文献DOI怎么找? 2029363
邀请新用户注册赠送积分活动 1062975
科研通“疑难数据库(出版商)”最低求助积分说明 948558