亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TET2-Mediated mRNA and DNA Oxidation in Leukemia Homing and Immune Evasion

生物 逃避(道德) 免疫系统 白血病 癌症研究 免疫学 信使核糖核酸 分子生物学 遗传学 基因
作者
Yangchan Li,Xiaolan Deng,Lei Dong,Li Han,Le Xuan Truong Nguyen,Jianhuang Xue,Zhicong Zhao,Wei Li,Ying Qing,Chao Shen,Brandon Tan,Zhenhua Chen,Min Xue,Keith Leung,Kitty Wang,Srividya Swaminathan,Ling Li,Mark Wunderlich,James C. Mulloy,Bin Zhang,David Horne,Steven T. Rosen,Guido Marcucci,Mingjiang Xu,Zejuan Li,Minjie Wei,Rui Su,Jianjun Chen
出处
期刊:Blood [American Society of Hematology]
卷期号:140 (Supplement 1): 2975-2977
标识
DOI:10.1182/blood-2022-162619
摘要

Emerging evidence strongly indicates that dysregulation of chemical modifications in DNA or RNA leads to hematopoietic malignancies, including acute myeloid leukemia (AML). Tet methycytosine dioxygenases 2 (TET2) mutations have been characterized in 15-20% AML and its deficiency promotes leukemogenesis and leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. TET2 catalyzes the demethylation of DNA 5-methylcytosine (5mC) and plays a central role in transcriptionally regulating gene expression. Besides DNA methylation, recent studies support a novel function for TET2-mediated demethylation of methyl-5-cytosine (termed as 'm5C' to distinguish from DNA 5mC) in mRNAs. However, it is totally unknown whether and (if so) how TET2-induced mRNA m5C demethylation contributes to leukemogenesis (or tumorigenesis in general). To evaluate the role of Tet2 in de novo leukemogenesis, we have generated various AML models driven by AML1-ETO9a (AE9a, from t(8;21)), MLL-AF9 (MA9, from MLL-r/t(11q23)), PML-RARA (from t(15;17)), and NRAS mutation. Such selection is clinically relevant because TET2 mutation and/or transcriptional suppression have been frequently observed in those AML subtypes (Fig. 1A and B). Notably, Tet2 depletion dramatically promoted primary leukemogenesis in vivo (Fig. 1C). Strikingly, Tet2 depletion had very weak effects on the growth/proliferation of primary AML cells in liquid culture in vitro (Fig. 1D). Collectively, Tet2 deficiency led to fast development of AML and such effect is unlikely due to enhanced cell proliferation. To decipher the underlying mechanism(s), we collected the primary Tet2-/- and Tet2+/+ AML cells for transcriptome-wide RNA-seq and found that Tet2 deficiency significantly increased expression of the genes enriched in the "Hematopoietic Stem Cell" pathway (Fig. 1E). Via flow cytometry, we showed that Tet2 deficiency significantly increased the Lin−c-Kit+Sca-1+ (LSK) primitive cell population (Fig. 1F). Via in vivo limiting dilution assay (LDA), we showed that Tet2 deletion significantly increased LSCs frequency by over 30-fold (Fig. 1G). During leukemogenesis, the homing and/or anchoring of LSC into the BM niche plays a predominant role to facilitate LSC self-renewal in vivo. Via in situ confocal imaging, we observed that there were more Tet2 deficient-AML cells migrating into the BM-derived stromal cells relative to the Tet2+/+ group (Fig. 1H). Further studies revealed that Tetranspanin 13 (Tspan13), a core enriched gene in the "Hematopoietic Stem Cell" pathway, is a functionally essential target of Tet2. Tet2 deficiency stimulated Tspan13 expression in primary AML cells (Fig. 1I) and genetic depletion of Tspan13 could substantially reverse the increased LSC homing (Fig. 1J) and self-renewal ability caused by Tet2 depletion. Tet2 deficiency-mediated upregulation of Tspan13 is not dependent on DNA demethylation or transcriptional regulation, but dependent on mRNA demethylation and post-transcriptional regulation (Fig. 1K). Specifically, Tet2 deficiency led to the accumulation of m5C in Tspan13 mRNA (Fig. 1L), and Y-box binding protein 1 (Ybx1), the m5C "reader", could recognize m5C modification, stabilize Tspan13 transcript, and increase its overall expression. The increased expression of Tspan13 further activated the CXCR4/CXCL12 axis, which pays a dominant role in trafficking LSCs into BM niche. In addition to the BM stromal cells, the leukemia microenvironment contains various immune cells which mediate the anti-tumor immune response. Tet2 deficiency remarkably suppressed various immune-related pathways, especially the signaling and genes which are related to interferon (IFN) responses. Specifically, Tet2 deficiency transcriptionally suppressed the expression of IFN-stimulated genes (ISGs), especially Cxcl10, Oasl2, and Isg1 (Fig. 1M and N), via DNA 5hmC modification. Consequently, Tet2 deficiency in AML cells suppressed the recruitment of CD8+ T cells, but not other types of immune cells, and conferred AML cells resistance to CD8+ T cell-mediated antileukemia immunity (Fig. 1O). Collectively, our studies uncover previously unappreciated roles and underlying molecular mechanisms of TET2 in regulating BM niche programing, LSC homing/self-renewal and immune response in AML pathogenesis, as both RNA and DNA demethylase. Figure 1View largeDownload PPTFigure 1View largeDownload PPT Close modal

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助liuliu采纳,获得10
16秒前
lingling完成签到 ,获得积分10
48秒前
Benhnhk21完成签到,获得积分10
59秒前
1分钟前
1分钟前
electricelectric应助Benhnhk21采纳,获得30
1分钟前
Ava应助33采纳,获得10
2分钟前
Andrewlabeth完成签到,获得积分10
2分钟前
zhao完成签到 ,获得积分0
2分钟前
Levelsinc发布了新的文献求助30
3分钟前
3分钟前
雨jia完成签到,获得积分10
3分钟前
zhoufz发布了新的文献求助20
3分钟前
3分钟前
Levelsinc完成签到,获得积分10
3分钟前
3分钟前
从容芮完成签到,获得积分0
3分钟前
liuliu发布了新的文献求助10
4分钟前
liuliu完成签到,获得积分20
4分钟前
CodeCraft应助xlj采纳,获得10
4分钟前
634301059完成签到 ,获得积分10
4分钟前
专注白昼应助zhoufz采纳,获得10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
5分钟前
xlj发布了新的文献求助10
5分钟前
5分钟前
33发布了新的文献求助10
5分钟前
5分钟前
zhoufz完成签到,获得积分20
5分钟前
里昂发布了新的文献求助60
5分钟前
5分钟前
阿婧完成签到 ,获得积分10
5分钟前
里昂完成签到,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
姗姗发布了新的文献求助10
7分钟前
英俊的铭应助姗姗采纳,获得30
7分钟前
姗姗完成签到,获得积分10
7分钟前
852应助堪冷之采纳,获得30
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292441
求助须知:如何正确求助?哪些是违规求助? 4442998
关于积分的说明 13830773
捐赠科研通 4326410
什么是DOI,文献DOI怎么找? 2374844
邀请新用户注册赠送积分活动 1370182
关于科研通互助平台的介绍 1334641