Evaluating Subtle Pathological Changes in Early Myocardial Ischemia Using Spectral Histopathology

缺血 化学 电磁干扰 线性判别分析 傅里叶变换红外光谱 心脏病学 内科学 医学 人工智能 电磁干扰 计算机科学 光学 电信 物理
作者
Tian Tian,Jianhua Zhang,Ling Xiong,Haixing Yu,Kaifei Deng,Xin-Biao Liao,Fu Zhang,Ping Huang,Ji Zhang,Yijiu Chen
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (49): 17112-17120 被引量:3
标识
DOI:10.1021/acs.analchem.2c03368
摘要

Early myocardial ischemia (EMI) is morphologically challenging, and the results from conventional histological staining may be subjective, imprecise, or even silent. The size of myocardial necrosis determines the acute and long-term mortality of EMI. The precise diagnosis of myocardial ischemia is critical for both clinical management and forensic investigation. Fourier transform infrared (FTIR) spectroscopic imaging is a highly sensitive tool for detecting protein conformations and imaging protein profiles. The aim of this study was to evaluate the application of FTIR imaging with multivariate analysis to detect biochemical changes in the protein conformation in the early phase of myocardial ischemia and to visually classify different disease states. The spectra and curve fitting results revealed that the total protein content decreased significantly in the EMI group and that the α-helix content of the secondary protein structure continuously decreased as ischemia progressed, while the β-sheet content increased. Differences in the control and EMI groups and perfused and ischemic myocardium were confirmed using principal component analysis and partial least squares discriminant analysis. Next, two support vector machine classifiers were effectively created. The accuracy, recall, and precision were 99.98, 99.96, and 100.00%, respectively, to differentiate the EMI group from the control group and 99.25, 98.95, and 99.54%, respectively, to differentiate perfused and ischemic myocardium. Ultimately, high EMI diagnostic accuracy was achieved with 100.00% recall and 100.00% precision, and ischemic myocardium diagnostic accuracy was achieved with 99.30% recall and 99.53% precision for the test set. This pilot study demonstrated that FTIR imaging is a powerful automated quantitative analysis tool to detect EMI without morphological changes and will improve diagnostic accuracy and patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
章家炜发布了新的文献求助10
2秒前
脑洞疼应助xfxx采纳,获得10
2秒前
wanci应助茶博士采纳,获得10
2秒前
所所应助YYT采纳,获得10
3秒前
匿名网友完成签到 ,获得积分10
3秒前
雪白雍完成签到,获得积分10
4秒前
maomao完成签到,获得积分10
4秒前
我是笨蛋完成签到 ,获得积分10
6秒前
酷波er应助caoyy采纳,获得10
7秒前
7秒前
Dreamsli发布了新的文献求助10
8秒前
有只小狗完成签到,获得积分10
9秒前
飞飞完成签到,获得积分10
10秒前
豆dou发布了新的文献求助10
10秒前
Mannone完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
13679165979完成签到,获得积分10
11秒前
Jocelyn7关注了科研通微信公众号
12秒前
Jzhang应助赵小可可可可采纳,获得10
12秒前
wls完成签到 ,获得积分10
13秒前
CC完成签到,获得积分10
13秒前
14秒前
鬼才之眼完成签到 ,获得积分10
14秒前
xfxx发布了新的文献求助10
15秒前
章家炜完成签到,获得积分20
15秒前
15秒前
茶博士发布了新的文献求助10
15秒前
专通下水道完成签到 ,获得积分10
20秒前
20秒前
20秒前
nenoaowu发布了新的文献求助30
20秒前
小马甲应助章家炜采纳,获得10
22秒前
赵李艺完成签到 ,获得积分10
22秒前
完美世界应助高大黄蜂采纳,获得10
23秒前
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824