Performance Evaluation of Deep Learning based Mandarin Fruit Sorting System with Industrial Camera

人工智能 计算机科学 学习迁移 模式识别(心理学) 分类 图像分割 卷积神经网络 聚类分析 深度学习 预处理器 上下文图像分类 分割 计算机视觉 图像(数学) 算法
作者
Muralidharan Duraisamy,Rajavendhan Govindaraj,N. Sri Ram Mohan,Anandhanarayanan Kamalakannan,Satish Bindal,Anita Titus
标识
DOI:10.1109/icosec54921.2022.9951937
摘要

Manual inspection of fruit surface defects is time consuming, involves labour cost, prone to human error and possess inconsistent classification standards in fruit sorting application. To solve this issue, an automatic fruit sorting algorithm using deep learning technique was proposed to identify surface defects namely splitting, pitting, and stem-end rot found in mandarin fruits. The fruit sorting algorithm consists of K-Medoids segmentation and Convolutional Neural Network (CNN) classification model. The grayscale images of mandarin fruit surface were captured from an image acquisition system built with Near Infrared (NIR) camera. A preprocessing median filter was applied to remove random noise. After preprocessing, segmentation was carried out using K-Medoids clustering to crop the fruit surface image from the background region. Different CNN models namely VGG-16, InceptionV3 and MobileNet were trained and tested with and without transfer learning approach using the cropped image dataset. After training, the cropped fruit surface image was given to CNN model for defect classification. The classification results of the above models improved significantly after implementing transfer learning method. The VGG-16 model achieved a maximum overall classification accuracy of 90% without transfer learning and 99.53% with transfer learning approach when compared with the InceptionV3 and MobileNet. Overall accuracy of MobileNet improved from 57% to 98% after transfer learning and also it takes minimum time for inference. Considering both the overall accuracy and inference time parameters with the transfer learning approach, the MobileNet is found to be the best model for mandarin fruit sorting application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏浅完成签到,获得积分10
1秒前
小白发布了新的文献求助10
1秒前
肖肖完成签到,获得积分10
2秒前
bei完成签到,获得积分10
2秒前
2秒前
焦糖完成签到,获得积分10
3秒前
RATHER完成签到,获得积分10
3秒前
3秒前
4秒前
公西翠萱完成签到 ,获得积分10
5秒前
孙友浩完成签到,获得积分10
6秒前
ange完成签到,获得积分10
10秒前
10秒前
10秒前
DanaLin完成签到,获得积分10
11秒前
Yang完成签到,获得积分10
11秒前
五月天完成签到,获得积分10
11秒前
jessie完成签到,获得积分10
12秒前
14秒前
sen123发布了新的文献求助10
14秒前
hu123发布了新的文献求助10
16秒前
咕_完成签到 ,获得积分10
16秒前
星辰大海应助dddyrrrrr采纳,获得10
16秒前
水清木华完成签到,获得积分10
19秒前
21秒前
小黑猴ps发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助100
22秒前
xr完成签到 ,获得积分10
22秒前
23秒前
ruogu7完成签到,获得积分10
26秒前
岁月旧曾谙完成签到,获得积分10
27秒前
今后应助科研通管家采纳,获得10
28秒前
FashionBoy应助科研通管家采纳,获得10
28秒前
星辰大海应助科研通管家采纳,获得10
29秒前
高调的摆酒人完成签到,获得积分10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
研友_ngqgY8完成签到,获得积分10
30秒前
样idol完成签到 ,获得积分10
31秒前
科研通AI6应助Anerspaner采纳,获得20
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418690
求助须知:如何正确求助?哪些是违规求助? 4534376
关于积分的说明 14143513
捐赠科研通 4450562
什么是DOI,文献DOI怎么找? 2441313
邀请新用户注册赠送积分活动 1433019
关于科研通互助平台的介绍 1410438