Performance Evaluation of Deep Learning based Mandarin Fruit Sorting System with Industrial Camera

人工智能 计算机科学 学习迁移 模式识别(心理学) 分类 图像分割 卷积神经网络 聚类分析 深度学习 预处理器 上下文图像分类 分割 计算机视觉 图像(数学) 算法
作者
Muralidharan Duraisamy,Rajavendhan Govindaraj,N. Sri Ram Mohan,Anandhanarayanan Kamalakannan,Satish Bindal,Anita Titus
标识
DOI:10.1109/icosec54921.2022.9951937
摘要

Manual inspection of fruit surface defects is time consuming, involves labour cost, prone to human error and possess inconsistent classification standards in fruit sorting application. To solve this issue, an automatic fruit sorting algorithm using deep learning technique was proposed to identify surface defects namely splitting, pitting, and stem-end rot found in mandarin fruits. The fruit sorting algorithm consists of K-Medoids segmentation and Convolutional Neural Network (CNN) classification model. The grayscale images of mandarin fruit surface were captured from an image acquisition system built with Near Infrared (NIR) camera. A preprocessing median filter was applied to remove random noise. After preprocessing, segmentation was carried out using K-Medoids clustering to crop the fruit surface image from the background region. Different CNN models namely VGG-16, InceptionV3 and MobileNet were trained and tested with and without transfer learning approach using the cropped image dataset. After training, the cropped fruit surface image was given to CNN model for defect classification. The classification results of the above models improved significantly after implementing transfer learning method. The VGG-16 model achieved a maximum overall classification accuracy of 90% without transfer learning and 99.53% with transfer learning approach when compared with the InceptionV3 and MobileNet. Overall accuracy of MobileNet improved from 57% to 98% after transfer learning and also it takes minimum time for inference. Considering both the overall accuracy and inference time parameters with the transfer learning approach, the MobileNet is found to be the best model for mandarin fruit sorting application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2mo完成签到,获得积分10
刚刚
大个应助em0采纳,获得20
刚刚
CodeCraft应助齐婷婷采纳,获得10
刚刚
池haojie发布了新的文献求助10
刚刚
英姑应助WTT采纳,获得10
1秒前
沧浪江发布了新的文献求助10
1秒前
1秒前
2秒前
Meyako应助TJY采纳,获得10
2秒前
婷婷完成签到,获得积分20
3秒前
熠紋完成签到 ,获得积分10
3秒前
开朗香旋发布了新的文献求助10
3秒前
传奇3应助bjwh采纳,获得10
3秒前
斯文败类应助qi采纳,获得10
3秒前
OriC完成签到,获得积分10
4秒前
合适尔风完成签到,获得积分10
4秒前
Orange应助轻松博超采纳,获得10
4秒前
4秒前
逸之发布了新的文献求助10
6秒前
6秒前
SciGPT应助haruka采纳,获得10
6秒前
966完成签到,获得积分10
6秒前
脑洞疼应助咿呀采纳,获得30
6秒前
刘子龙发布了新的文献求助10
7秒前
科研通AI2S应助kingmantj采纳,获得10
7秒前
热心玉兰发布了新的文献求助10
8秒前
可恶发布了新的文献求助10
8秒前
8秒前
WalkToSky完成签到,获得积分10
8秒前
李爱国应助于大本事采纳,获得10
8秒前
wei发布了新的文献求助10
8秒前
科研通AI6应助tannie采纳,获得10
9秒前
9秒前
leon完成签到 ,获得积分10
9秒前
小郑不睡觉完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
wweiyyulling给赶路人的求助进行了留言
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435534
求助须知:如何正确求助?哪些是违规求助? 4547530
关于积分的说明 14209113
捐赠科研通 4467757
什么是DOI,文献DOI怎么找? 2448727
邀请新用户注册赠送积分活动 1439617
关于科研通互助平台的介绍 1416244