Performance Evaluation of Deep Learning based Mandarin Fruit Sorting System with Industrial Camera

人工智能 计算机科学 学习迁移 模式识别(心理学) 分类 图像分割 卷积神经网络 聚类分析 深度学习 预处理器 上下文图像分类 分割 计算机视觉 图像(数学) 算法
作者
Muralidharan Duraisamy,Rajavendhan Govindaraj,N. Sri Ram Mohan,Anandhanarayanan Kamalakannan,Satish Bindal,Anita Titus
标识
DOI:10.1109/icosec54921.2022.9951937
摘要

Manual inspection of fruit surface defects is time consuming, involves labour cost, prone to human error and possess inconsistent classification standards in fruit sorting application. To solve this issue, an automatic fruit sorting algorithm using deep learning technique was proposed to identify surface defects namely splitting, pitting, and stem-end rot found in mandarin fruits. The fruit sorting algorithm consists of K-Medoids segmentation and Convolutional Neural Network (CNN) classification model. The grayscale images of mandarin fruit surface were captured from an image acquisition system built with Near Infrared (NIR) camera. A preprocessing median filter was applied to remove random noise. After preprocessing, segmentation was carried out using K-Medoids clustering to crop the fruit surface image from the background region. Different CNN models namely VGG-16, InceptionV3 and MobileNet were trained and tested with and without transfer learning approach using the cropped image dataset. After training, the cropped fruit surface image was given to CNN model for defect classification. The classification results of the above models improved significantly after implementing transfer learning method. The VGG-16 model achieved a maximum overall classification accuracy of 90% without transfer learning and 99.53% with transfer learning approach when compared with the InceptionV3 and MobileNet. Overall accuracy of MobileNet improved from 57% to 98% after transfer learning and also it takes minimum time for inference. Considering both the overall accuracy and inference time parameters with the transfer learning approach, the MobileNet is found to be the best model for mandarin fruit sorting application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
利好完成签到 ,获得积分10
1秒前
ATOM完成签到,获得积分20
1秒前
zuojiayu关注了科研通微信公众号
2秒前
sunshitao发布了新的文献求助30
2秒前
媛媛完成签到 ,获得积分10
2秒前
2秒前
Stella应助tdtk采纳,获得30
3秒前
3秒前
爱学习的飞翔人完成签到,获得积分10
3秒前
3秒前
鲤鱼荔枝发布了新的文献求助10
3秒前
辛勤誉完成签到 ,获得积分10
4秒前
耳东完成签到,获得积分10
4秒前
4秒前
哭泣藏花完成签到 ,获得积分10
4秒前
William鉴哲发布了新的文献求助10
4秒前
haoyooo发布了新的文献求助10
4秒前
斯文的道罡完成签到,获得积分10
4秒前
Criminology34应助鹅鹅鹅丶采纳,获得10
5秒前
Stella应助大聪明采纳,获得30
5秒前
bkagyin应助Inspiring采纳,获得10
5秒前
风中巧曼完成签到,获得积分10
6秒前
7秒前
chengli完成签到,获得积分10
8秒前
炙热静白发布了新的文献求助10
8秒前
9秒前
MayoCQ完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI6应助不安映雁采纳,获得10
10秒前
Hilda007应助易水采纳,获得10
10秒前
Dongjie完成签到,获得积分10
10秒前
11秒前
Max完成签到,获得积分10
11秒前
Akim应助学术羊采纳,获得10
11秒前
舒适太阳完成签到,获得积分10
11秒前
HZ完成签到 ,获得积分10
11秒前
李子潭应助火星上如松采纳,获得40
12秒前
秦波完成签到,获得积分10
12秒前
李天磊发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337738
求助须知:如何正确求助?哪些是违规求助? 4474923
关于积分的说明 13926546
捐赠科研通 4369947
什么是DOI,文献DOI怎么找? 2401099
邀请新用户注册赠送积分活动 1394118
关于科研通互助平台的介绍 1366037