已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance Evaluation of Deep Learning based Mandarin Fruit Sorting System with Industrial Camera

人工智能 计算机科学 学习迁移 模式识别(心理学) 分类 图像分割 卷积神经网络 聚类分析 深度学习 预处理器 上下文图像分类 分割 计算机视觉 图像(数学) 算法
作者
Muralidharan Duraisamy,Rajavendhan Govindaraj,N. Sri Ram Mohan,Anandhanarayanan Kamalakannan,Satish Bindal,Anita Titus
标识
DOI:10.1109/icosec54921.2022.9951937
摘要

Manual inspection of fruit surface defects is time consuming, involves labour cost, prone to human error and possess inconsistent classification standards in fruit sorting application. To solve this issue, an automatic fruit sorting algorithm using deep learning technique was proposed to identify surface defects namely splitting, pitting, and stem-end rot found in mandarin fruits. The fruit sorting algorithm consists of K-Medoids segmentation and Convolutional Neural Network (CNN) classification model. The grayscale images of mandarin fruit surface were captured from an image acquisition system built with Near Infrared (NIR) camera. A preprocessing median filter was applied to remove random noise. After preprocessing, segmentation was carried out using K-Medoids clustering to crop the fruit surface image from the background region. Different CNN models namely VGG-16, InceptionV3 and MobileNet were trained and tested with and without transfer learning approach using the cropped image dataset. After training, the cropped fruit surface image was given to CNN model for defect classification. The classification results of the above models improved significantly after implementing transfer learning method. The VGG-16 model achieved a maximum overall classification accuracy of 90% without transfer learning and 99.53% with transfer learning approach when compared with the InceptionV3 and MobileNet. Overall accuracy of MobileNet improved from 57% to 98% after transfer learning and also it takes minimum time for inference. Considering both the overall accuracy and inference time parameters with the transfer learning approach, the MobileNet is found to be the best model for mandarin fruit sorting application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
九黎完成签到 ,获得积分10
2秒前
嘤嘤学语完成签到,获得积分10
2秒前
什么芝士蛋糕完成签到 ,获得积分10
3秒前
4秒前
ordin完成签到,获得积分10
6秒前
Sherry发布了新的文献求助10
7秒前
龍Ryu完成签到,获得积分10
9秒前
lam发布了新的文献求助10
11秒前
我不ins你_完成签到 ,获得积分10
11秒前
cocu117完成签到 ,获得积分10
12秒前
刻苦期待完成签到 ,获得积分10
12秒前
称心的自行车完成签到,获得积分10
13秒前
兮兮完成签到 ,获得积分10
14秒前
ying关注了科研通微信公众号
14秒前
zhangnan完成签到 ,获得积分10
16秒前
雨霧雲完成签到,获得积分10
16秒前
扣子完成签到,获得积分10
16秒前
Agoni完成签到,获得积分10
21秒前
lam完成签到,获得积分10
23秒前
hehehehehe完成签到 ,获得积分10
24秒前
24秒前
xiaoxuey完成签到 ,获得积分10
25秒前
26秒前
黑巧的融化完成签到 ,获得积分10
26秒前
jimey发布了新的文献求助10
26秒前
路过地球发布了新的文献求助10
29秒前
宇宇完成签到 ,获得积分10
29秒前
加油杨完成签到 ,获得积分10
31秒前
Maqian完成签到,获得积分20
31秒前
客厅狂欢发布了新的文献求助10
32秒前
田柾国发布了新的文献求助10
33秒前
37秒前
阎白莲完成签到 ,获得积分10
38秒前
清爽老九应助科研通管家采纳,获得60
39秒前
GingerF应助科研通管家采纳,获得70
39秒前
大模型应助科研通管家采纳,获得30
39秒前
所所应助科研通管家采纳,获得10
39秒前
完美世界应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136538
求助须知:如何正确求助?哪些是违规求助? 4336641
关于积分的说明 13510132
捐赠科研通 4174709
什么是DOI,文献DOI怎么找? 2289038
邀请新用户注册赠送积分活动 1289716
关于科研通互助平台的介绍 1231042