Performance Evaluation of Deep Learning based Mandarin Fruit Sorting System with Industrial Camera

人工智能 计算机科学 学习迁移 模式识别(心理学) 分类 图像分割 卷积神经网络 聚类分析 深度学习 预处理器 上下文图像分类 分割 计算机视觉 图像(数学) 算法
作者
Muralidharan Duraisamy,Rajavendhan Govindaraj,N. Sri Ram Mohan,Anandhanarayanan Kamalakannan,Satish Bindal,Anita Titus
标识
DOI:10.1109/icosec54921.2022.9951937
摘要

Manual inspection of fruit surface defects is time consuming, involves labour cost, prone to human error and possess inconsistent classification standards in fruit sorting application. To solve this issue, an automatic fruit sorting algorithm using deep learning technique was proposed to identify surface defects namely splitting, pitting, and stem-end rot found in mandarin fruits. The fruit sorting algorithm consists of K-Medoids segmentation and Convolutional Neural Network (CNN) classification model. The grayscale images of mandarin fruit surface were captured from an image acquisition system built with Near Infrared (NIR) camera. A preprocessing median filter was applied to remove random noise. After preprocessing, segmentation was carried out using K-Medoids clustering to crop the fruit surface image from the background region. Different CNN models namely VGG-16, InceptionV3 and MobileNet were trained and tested with and without transfer learning approach using the cropped image dataset. After training, the cropped fruit surface image was given to CNN model for defect classification. The classification results of the above models improved significantly after implementing transfer learning method. The VGG-16 model achieved a maximum overall classification accuracy of 90% without transfer learning and 99.53% with transfer learning approach when compared with the InceptionV3 and MobileNet. Overall accuracy of MobileNet improved from 57% to 98% after transfer learning and also it takes minimum time for inference. Considering both the overall accuracy and inference time parameters with the transfer learning approach, the MobileNet is found to be the best model for mandarin fruit sorting application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助sun采纳,获得10
刚刚
赘婿应助爱睡觉采纳,获得10
2秒前
李健应助月落西山采纳,获得10
2秒前
王国向完成签到,获得积分10
2秒前
YAN完成签到,获得积分10
4秒前
顾矜应助swx采纳,获得10
6秒前
戈屿完成签到 ,获得积分10
7秒前
7秒前
yjj发布了新的文献求助10
7秒前
8秒前
浮游应助gsmsc采纳,获得10
9秒前
Rockyhee22发布了新的文献求助10
11秒前
gt发布了新的文献求助20
11秒前
满意巨人完成签到,获得积分20
11秒前
11秒前
11秒前
1111完成签到 ,获得积分10
12秒前
FashionBoy应助Qing采纳,获得10
12秒前
CodeCraft应助沉静芒果采纳,获得30
12秒前
14秒前
古德猫宁发布了新的文献求助20
16秒前
16秒前
在水一方应助贤不闲采纳,获得10
17秒前
无花果应助MJS采纳,获得30
18秒前
zzzkkkxxx应助刘芬采纳,获得10
18秒前
隐形曼青应助Rockyhee22采纳,获得10
18秒前
loogn7发布了新的文献求助10
18秒前
19秒前
爱睡觉完成签到,获得积分10
20秒前
21秒前
酷波er应助gt采纳,获得10
21秒前
songyu发布了新的文献求助20
21秒前
22秒前
延胡索发布了新的文献求助10
22秒前
yjj完成签到,获得积分10
23秒前
25秒前
12345完成签到,获得积分10
25秒前
小情思绪发布了新的文献求助10
25秒前
26秒前
Hello应助梦想是搓澡师采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354035
求助须知:如何正确求助?哪些是违规求助? 4486507
关于积分的说明 13966675
捐赠科研通 4386923
什么是DOI,文献DOI怎么找? 2410096
邀请新用户注册赠送积分活动 1402435
关于科研通互助平台的介绍 1376249