Performance Evaluation of Deep Learning based Mandarin Fruit Sorting System with Industrial Camera

人工智能 计算机科学 学习迁移 模式识别(心理学) 分类 图像分割 卷积神经网络 聚类分析 深度学习 预处理器 上下文图像分类 分割 计算机视觉 图像(数学) 算法
作者
Muralidharan Duraisamy,Rajavendhan Govindaraj,N. Sri Ram Mohan,Anandhanarayanan Kamalakannan,Satish Bindal,Anita Titus
标识
DOI:10.1109/icosec54921.2022.9951937
摘要

Manual inspection of fruit surface defects is time consuming, involves labour cost, prone to human error and possess inconsistent classification standards in fruit sorting application. To solve this issue, an automatic fruit sorting algorithm using deep learning technique was proposed to identify surface defects namely splitting, pitting, and stem-end rot found in mandarin fruits. The fruit sorting algorithm consists of K-Medoids segmentation and Convolutional Neural Network (CNN) classification model. The grayscale images of mandarin fruit surface were captured from an image acquisition system built with Near Infrared (NIR) camera. A preprocessing median filter was applied to remove random noise. After preprocessing, segmentation was carried out using K-Medoids clustering to crop the fruit surface image from the background region. Different CNN models namely VGG-16, InceptionV3 and MobileNet were trained and tested with and without transfer learning approach using the cropped image dataset. After training, the cropped fruit surface image was given to CNN model for defect classification. The classification results of the above models improved significantly after implementing transfer learning method. The VGG-16 model achieved a maximum overall classification accuracy of 90% without transfer learning and 99.53% with transfer learning approach when compared with the InceptionV3 and MobileNet. Overall accuracy of MobileNet improved from 57% to 98% after transfer learning and also it takes minimum time for inference. Considering both the overall accuracy and inference time parameters with the transfer learning approach, the MobileNet is found to be the best model for mandarin fruit sorting application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx发布了新的文献求助10
1秒前
fish发布了新的文献求助30
2秒前
NexusExplorer应助bofu采纳,获得10
2秒前
一_发布了新的文献求助10
3秒前
学术混子发布了新的文献求助10
3秒前
学姐大喊大叫的家完成签到 ,获得积分10
3秒前
Andy发布了新的文献求助10
3秒前
背后的华完成签到,获得积分10
4秒前
乐乐应助眼睛大的胡萝卜采纳,获得10
5秒前
5秒前
库昊的假粉丝应助十三采纳,获得20
6秒前
杳鸢应助食野之苹采纳,获得10
6秒前
春和景明完成签到,获得积分10
7秒前
张新芽发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
10秒前
10秒前
Dreamer完成签到,获得积分10
11秒前
Cherish发布了新的文献求助10
11秒前
11秒前
dwhnx完成签到,获得积分10
11秒前
joy完成签到,获得积分10
12秒前
13秒前
秀丽烨霖应助lc采纳,获得10
13秒前
王一帆发布了新的文献求助10
14秒前
莹仔发布了新的文献求助10
14秒前
善良鱼哟发布了新的文献求助10
14秒前
一_完成签到,获得积分10
14秒前
15秒前
情怀应助gsc采纳,获得10
15秒前
16秒前
笨笨从安完成签到,获得积分10
16秒前
上官若男应助跨材料采纳,获得10
16秒前
毕业发布了新的文献求助10
16秒前
水何澹澹完成签到,获得积分0
17秒前
17秒前
王浩楠完成签到,获得积分10
19秒前
脑洞疼应助Rex采纳,获得10
19秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227601
求助须知:如何正确求助?哪些是违规求助? 2875589
关于积分的说明 8191848
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373128
科研通“疑难数据库(出版商)”最低求助积分说明 646685
邀请新用户注册赠送积分活动 621178