亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance Evaluation of Deep Learning based Mandarin Fruit Sorting System with Industrial Camera

人工智能 计算机科学 学习迁移 模式识别(心理学) 分类 图像分割 卷积神经网络 聚类分析 深度学习 预处理器 上下文图像分类 分割 计算机视觉 图像(数学) 算法
作者
Muralidharan Duraisamy,Rajavendhan Govindaraj,N. Sri Ram Mohan,Anandhanarayanan Kamalakannan,Satish Bindal,Anita Titus
标识
DOI:10.1109/icosec54921.2022.9951937
摘要

Manual inspection of fruit surface defects is time consuming, involves labour cost, prone to human error and possess inconsistent classification standards in fruit sorting application. To solve this issue, an automatic fruit sorting algorithm using deep learning technique was proposed to identify surface defects namely splitting, pitting, and stem-end rot found in mandarin fruits. The fruit sorting algorithm consists of K-Medoids segmentation and Convolutional Neural Network (CNN) classification model. The grayscale images of mandarin fruit surface were captured from an image acquisition system built with Near Infrared (NIR) camera. A preprocessing median filter was applied to remove random noise. After preprocessing, segmentation was carried out using K-Medoids clustering to crop the fruit surface image from the background region. Different CNN models namely VGG-16, InceptionV3 and MobileNet were trained and tested with and without transfer learning approach using the cropped image dataset. After training, the cropped fruit surface image was given to CNN model for defect classification. The classification results of the above models improved significantly after implementing transfer learning method. The VGG-16 model achieved a maximum overall classification accuracy of 90% without transfer learning and 99.53% with transfer learning approach when compared with the InceptionV3 and MobileNet. Overall accuracy of MobileNet improved from 57% to 98% after transfer learning and also it takes minimum time for inference. Considering both the overall accuracy and inference time parameters with the transfer learning approach, the MobileNet is found to be the best model for mandarin fruit sorting application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lingling完成签到 ,获得积分10
24秒前
Benhnhk21完成签到,获得积分10
35秒前
39秒前
47秒前
electricelectric应助Benhnhk21采纳,获得30
1分钟前
Ava应助33采纳,获得10
1分钟前
Andrewlabeth完成签到,获得积分10
2分钟前
zhao完成签到 ,获得积分0
2分钟前
Levelsinc发布了新的文献求助30
2分钟前
2分钟前
雨jia完成签到,获得积分10
2分钟前
zhoufz发布了新的文献求助20
2分钟前
3分钟前
Levelsinc完成签到,获得积分10
3分钟前
3分钟前
从容芮完成签到,获得积分0
3分钟前
liuliu发布了新的文献求助10
3分钟前
liuliu完成签到,获得积分20
3分钟前
CodeCraft应助xlj采纳,获得10
4分钟前
634301059完成签到 ,获得积分10
4分钟前
专注白昼应助zhoufz采纳,获得10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
xlj发布了新的文献求助10
4分钟前
4分钟前
33发布了新的文献求助10
4分钟前
4分钟前
zhoufz完成签到,获得积分20
5分钟前
里昂发布了新的文献求助60
5分钟前
5分钟前
阿婧完成签到 ,获得积分10
5分钟前
里昂完成签到,获得积分10
5分钟前
6分钟前
6分钟前
7分钟前
姗姗发布了新的文献求助10
7分钟前
英俊的铭应助姗姗采纳,获得30
7分钟前
姗姗完成签到,获得积分10
7分钟前
852应助堪冷之采纳,获得30
8分钟前
浮游应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292441
求助须知:如何正确求助?哪些是违规求助? 4442998
关于积分的说明 13830773
捐赠科研通 4326410
什么是DOI,文献DOI怎么找? 2374844
邀请新用户注册赠送积分活动 1370182
关于科研通互助平台的介绍 1334641